

Ensuring A Solid DNS Foundation For VoIP

Anton Holleman

Anton.Holleman@nominum.com October 14, 2005

Is Your Infrastructure Ready For Voice Over IP?

"It is no longer a question of whether VoIP will wipe out traditional telephony, but a question how quickly it will do so."

"VoIP, in short, is completely reshaping the telecoms landscape."

Economist, September 15th 2005

- Where does DNS fit in?
- Modeling DNS data flow
- Making DNS robust
- DNS Requirements

Company Focus

Commercial–grade IP name and asset management

- DNS, DHCP, and IP management products

For medium to large deployments

Telco, service providers, finance, retail, government, etc.

Product leadership

- Performance
- Security
- Management

Nomln

Sample Telco and Service Provider Customers

Sample Enterprise and Government Customers

Nom¹num.

Eidgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology Zurich

Where does DNS fit in?

What is DNS?

Foundation for services

Abstraction layer on top of addresses

Mail	VoIP	Web		
DNS				
Network & Routers				

DNS From The Perspective of the Subscriber

- If DNS does not work 'the network is down'
 - No call possible
- A slow DNS is perceived as 'a slow network'
 Long call set up time

- Subscribers do not distinguish the network from DNS
 - DNS requirements for low latency and high availability

Modeling DNS Data Flow

Where Does DNS Appear?

Nomlnum

What is ENUM?

The best hope for an open-standards-based approach to communications identifiers and signaling for the next decade: Phone Numbers in the DNS (but not just phone numbers)

Why multiple ENUM types?

Nom¹num.

• Theory One:

- The Internet wasn't relevant until there were multiple networks.
- ENUM won't be relevant until we get a critical mass of VoIP implementations that use/need it.
- Theory Two:
 - Its just a matter of preserving ownership/control of something valuable, e.g.
 - Inside an enterprise
 - Between partners
 - Outsourcing while owning
 - Can Internet style ENUM triumph?

The Situation: Islands of VoIP Connected through the PSTN

Types of ENUM Deployments Nominum.

Public ENUM

Publicly available, shared database

Carrier ENUM

Database shared on the basis of bi- or multilateral agreements Interfaces with other CSPs ENUM OSS

Private ENUM

Non-public database

Why ENUM? Efficient Communications

Evolution of DNS data

Evolution of ENUM ?

ENUM Lookups Resolution

Making DNS Robust

Simple High Availability Architecture

Architecture Properties

Scalability

- Each PoP one or more caching DNS servers
- Slot in more authoritative servers if needed
- Performance
 - Caching name server as close as possible to the subscriber
- Availability
 - Not a single SPoF

DNS Requirements

Subscriber And Provider Requirements

Low latency

- Fast call set up time
- High availability
 - POTS Dial tone expectations
- Large volumes of data
 - Millions of phone numbers
- High throughput
 - Process thousands of calls a second
 - Resistance against denial of service attacks
- Security
- Provisioning, provisioning, provisioning, provisioning and provisioning

CNS Latency

Nom¹num.

Configuration: 1 GHz Pentium III, 512 GB of RAM, FreeBSD 4.10

CNS Response Latency

DNS Zone Architectures

Statements.

Туре	One Zone per Number	In the Middle	All Numbers in One Zone
Good For:	Public ENUM	Carrier ENUM	Private ENUM
Pros	 Handles number portability Greatest flexibility for subscribers 	 Reduces zone size and number of zones 	 Relatively easily managed Doesn't require vast tracts of hardware
Cons	 Huge number of zones! 	 Increases system complexity Requires cooperation 	 Number portability is harder Very large zone

Comparing BIND and Nominum ANS for ENUM

	BIND 9	Nominum ANS
Records in 3.5 Gigs RAM	28 MM	>200MM
Latency	2 seconds	0.003 seconds
Queries/Sec	57	33,000
CPU Utilization	99% each on two CPU's	12%

High Throughput

Why Throughput Matters

- Accommodate growth number of subscribers
- Denial of Service (DoS) attack disables call routing - brings phone system down

Provisioning, Provisioning, Provisioning And Provisioning

Millions of phone numbers

- On the fly moves adds and changes
 No service down time for changes
- APIs

Integrate DNS servers in your processes

- Dynamic DNS
 - Secured through TSIG or GSS-TSIG

Nom1n1

Historical Parallel

Semiconductors

1947 Transistor

1983 Domain Names, RRs

DNS

1958 Integrated Circuit 1993 Dynamic update, DHCP integration

1965 Moore's Law 2005 ?

How have DNS systems changed?

Nom¹num.

<u>1983</u>

 Where do I get the code for DNS to compile and install?

<u>2005</u>

- I need a system that can do moves, adds, and changes without restarting
- I need to manage 100 servers as a unit
- I need to manage 20 system administrators
- I need integrated DNS and DHCP

Conclusions

- DNS is a prerequisite for VoIP
- Latency and high availability matter to the subscriber
- High throughput, store large volumes, security and provisioning facilities matter to the provider
- Nominum implementation is ready to serve you today

Thank you