
Parallel TCP

Bill Allcock
Argonne National Laboratory

Definitions
● Logical Transfer

◆ The transfer of interest to the initiator, i.e. move file
foo from server A to server B.

● Network Endpoint
◆ In general something that has an IP address. A

Network Interface Card (NIC).
● Parallel Transfer

◆ Use of multiple TCP streams between a given pair of
network endpoints during a logical transfer

● Striped Transfer
◆ Use of multiple pairs of network endpoints during a

logical transfer.

What’s wrong with TCP?
● You probably wouldn’t be here if you didn’t

know that.
● TCP was designed for Telnet / Web like

applications.
● It was designed when T1 was a fast

network, big memory was 2MB, not 2 GB,
and a big file transfer was 100MB, not
100GB or even Terabytes.

AIMD and BWDP
● The primary problems are:

◆ Additive Increase Multiplicative Decrease
(AIMD) congestion control algorithm of TCP

◆ Requirement of having a buffer equal to the
Bandwidth Delay Product (BWDP)

◆ The interaction between those two.
◆ We use parallel and striped transfers to

work around these problems.

AIMD
● To the first order this algorithm:

◆ Exponentially increases the congestion
window (CWND) until it gets a congestion
event

◆ Cuts the CWND in half
◆ Linearly increases the CWND until it reaches

a congestion event.
◆ This assumes that congestion is the limiting

factor
◆ Note that CWND size is equivalent to Max

BW

BWDP
● Use a tank as an analogy
● I can keep putting water in until it is full.
● Then, I can only put in one gallon for each

gallon removed.
● You can calculate the volume of the tank

by taking the cross sectional area times
the height

● Think of the BW as the area and the RTT
as the length of the network pipe.

Recovery Time

Recovery Time =Bytes to Recover
Rate of Recovery

Bytes to Recover ∝1
2

 BW * RTT BWDP 

Rate of Recovery ∝MTU
RTT

Recovery Time ∝

1
2

 BW * RTT

MTU
RTT

⇒RTT2∗BW
MTU

Recovery Time for a Single
Congestion Event

● T1 (1.544 Mbs) with 50ms RTT ≅ 10 KB
◆ Recovery Time (1500 MTU): 0.16 Sec

● GigE with 50ms RTT ≅ 6250 KB
◆ Recovery Time (1500 MTU): 104 Seconds

● GigE to Amsterdam (100ms) ≅ 1250 KB
◆ Recovery Time (1500 MTU): 416 Seconds

● GigE to CERN (160ms) ≅ 2000 KB
◆ Recovery Time (1500 MTU): 1066 Sec (17.8

min)

How does Parallel TCP Help?
● We are basically cheating…. I mean we are

taking advantage of loopholes in the
system

● Reduces the severity of a congestion event
● Buffers are divided across streams so

faster recovery
● Probably get more than your fair share in

the router

Reduced Severity from
Congestion Events

● Don’t put all your eggs in one basket
● Normal TCP your BW Reduction is 50%

◆ 1000 Mbs * 50% = 500 Mbs Reduction
● In Parallel TCP BW Reduction is:

◆ Total BW / N Streams * 50%
◆ 1000 / 4 * 50% = 125 Mbs Reduction

● Note we are assuming only one stream
receives a congestion event

Faster Recovery from
Congestion Events

● Optimum TCP Buffer Size is now BWDP / N
where N is number of Streams

● Since Buffers are reduced in size by a
factor of 1/N so is the recovery time.

● This can also help work around host
limitations. If the maximum buffer size is
too small for max bandwidth, you can get
multiple smaller buffers.

More than your Fair Share

● This part is inferred, but we have no data with
which to back it up.

● Routers apply fair sharing algorithms to the
streams being processed.

● Since your logical transfer now has N streams, it is
getting N times the service it otherwise normally
would.

● I am told there are routers that can detect parallel
streams and will maintain your fair share, though I
have not run into one yet.

What about Striping?

● Typically used in a cluster with a shared file
system, but it can be a multi-homed host

● All the advantages of Parallel TCP
● Also get parallelism of CPUs, Disk subsystems,

buses, NICs, etc..
● You can, in certain circumstances, also get

parallelism of network paths
● This is a much more complicated implementation

and beyond the scope of what we are primarily
discussing here.

Nothing comes for free…

● As noted earlier, we are cheating.
● Congestion Control is there for a reason
● Buffer limitations may or may not be there

for a reason
● Other Netizens may austracize you.

Congestion Control

● Congestion Control is in place for a reason.
● If every TCP application started using

parallel TCP, overall performance would
decrease and there would be the risk of
congestive network collapse.

● Note that in the face of no congestion
parallel streams does not help

● In the face of heavy congestion, it can
perform worse.

Buffer Limitations

● More often than not, the system limitations
are there because that is way it came out
of the box.

● It requires root privilege to change them.
● However, sometimes, they are there

because of real resource limitations of the
host and you risk crashing the host by
over-extending its resources.

Cheat enough, but not too much

● If your use of parallel TCP causes too many
problems you could find yourself in
trouble.

◆ Admins get cranky when you crash their
machines

◆ Other users get cranky if you are hurting
overall network performance.

● Be a good Netizen

When should you use
Parallel TCP?

● Engineered, private, semi private, or very over
provisioned networks are good places to use
parallel TCP.

● Bulk data transport. It makes no sense at all to
use parallel TCP for most interactive apps.

● QOS: If you are guaranteed the bandwidth, use it
● Community Agreement: You are given permission

to hog the network.
● Lambda Switched Networks: You have your own

circuit, go nuts.

0 5 10 15 20 25 30 35
0

25

50

75

100

Affect of Parallel Streams
ANL to ISI (n=5)

Number of Streams

B
a

n
d

w
id

th
 (

M
b

s
)

2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
200

300

400

500

600

0

50

100

150

200

250

300

Affect of TCP Buffer Size
(iperf)

1 2 4 8 RTT

Buffer Size (MB)

B
W

 (
M

b
s

)

William (Bill) E. Allcock
Bill Allcock is the technology coordinator and evangelist for GridFTP
within the Globus Alliance. Bill has a BS in Computer Science and
an MS in Paper Science. In his 15 years work experience he has been
involved in a wide array of areas including computer networking,
distributed systems, embedded systems, data acquisition, process
engineering, control system tuning, and colloidal chemistry.

Bill’s current research focus involves applications requiring access to
large (Terabyte and Petabyte sized) data sets, so called DataGrid
problems. He is also heavily involved in the Global Grid Forum. Bill
has presented several previous tutorials on the Globus Toolkit(R),
primarily on GridFTP use and development libraries. He also has
lead tutorials on Introduction to Grids, as well as IO and security in
the Globus Toolkit.

