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Definitions
● Logical Transfer

◆ The transfer of interest to the initiator, i.e. move file 
foo from server A to server B. 

● Network Endpoint
◆ In general something that has an IP address.  A 

Network Interface Card (NIC).
● Parallel Transfer

◆ Use of multiple TCP streams between a given pair of 
network endpoints during a logical transfer

● Striped Transfer
◆ Use of multiple pairs of network endpoints during a 

logical transfer.



  

What’s wrong with TCP?
● You probably wouldn’t be here if you didn’t 

know that.
● TCP was designed for Telnet / Web like 

applications.
● It was designed when T1 was a fast 

network, big memory was 2MB, not 2 GB, 
and a big file transfer was 100MB, not 
100GB or even Terabytes.



  

AIMD and BWDP
● The primary problems are:

◆ Additive Increase Multiplicative Decrease 
(AIMD) congestion control algorithm of TCP

◆ Requirement of having a buffer equal to the 
Bandwidth Delay Product (BWDP) 

◆ The interaction between those two.
◆ We use parallel and striped transfers to 

work around these problems.



  

AIMD
● To the first order this algorithm:

◆ Exponentially increases the congestion 
window (CWND) until it gets a congestion 
event

◆ Cuts the CWND in half
◆ Linearly increases the CWND until it reaches 

a congestion event.
◆ This assumes that congestion is the limiting 

factor
◆ Note that CWND size is equivalent to Max 

BW



  

BWDP
● Use a tank as an analogy
● I can keep putting water in until it is full.
● Then, I can only put in one gallon for each 

gallon removed.
● You can calculate the volume of the tank 

by taking the cross sectional area times 
the height

● Think of the BW as the area and the RTT 
as the length of the network pipe.



  

Recovery Time

Recovery Time =Bytes to Recover
Rate of Recovery

Bytes to Recover ∝1
2

 BW *  RTT BWDP 

Rate of Recovery ∝MTU
RTT

Recovery Time ∝

1
2

 BW *  RTT

MTU
RTT

⇒RTT2∗BW
MTU



  

Recovery Time for a Single 
Congestion Event

● T1 (1.544 Mbs) with 50ms RTT  ≅ 10 KB
◆ Recovery Time (1500 MTU):  0.16 Sec

● GigE with 50ms RTT ≅ 6250 KB
◆ Recovery Time (1500 MTU): 104 Seconds

● GigE to Amsterdam (100ms)  ≅ 1250 KB
◆ Recovery Time (1500 MTU): 416 Seconds

● GigE to CERN (160ms) ≅ 2000 KB
◆ Recovery Time (1500 MTU): 1066 Sec (17.8 

min)



  

How does Parallel TCP Help?
● We are basically cheating…. I mean we are 

taking advantage of loopholes in the 
system

● Reduces the severity of a congestion event
● Buffers are divided across streams so 

faster recovery
● Probably get more than your fair share in 

the router



  

Reduced Severity from
Congestion Events

● Don’t put all your eggs in one basket
● Normal TCP your BW Reduction is 50%

◆ 1000 Mbs * 50% = 500 Mbs Reduction
● In Parallel TCP BW Reduction is:

◆ Total BW / N Streams * 50%
◆ 1000 / 4 * 50% = 125 Mbs Reduction

● Note we are assuming only one stream 
receives a congestion event



  

Faster Recovery from
Congestion Events

● Optimum TCP Buffer Size is now BWDP / N 
where N is number of Streams

● Since Buffers are reduced in size by a 
factor of 1/N so is the recovery time.

● This can also help work around host 
limitations.  If the maximum buffer size is 
too small for max bandwidth, you can get 
multiple smaller buffers.



  

More than your Fair Share

● This part is inferred, but we have no data with 
which to back it up.

● Routers apply fair sharing algorithms to the 
streams being processed.

● Since your logical transfer now has N streams, it is 
getting N times the service it otherwise normally 
would.

● I am told there are routers that can detect parallel 
streams and will maintain your fair share, though I 
have not run into one yet.



  

What about Striping?

● Typically used in a cluster with a shared file 
system, but it can be a multi-homed host

● All the advantages of Parallel TCP
● Also get parallelism of CPUs, Disk subsystems, 

buses, NICs, etc..
● You can, in certain circumstances, also get 

parallelism of network paths
● This is a much more complicated implementation 

and beyond the scope of what we are primarily 
discussing here.



  

Nothing comes for free…

● As noted earlier, we are cheating.
● Congestion Control is there for a reason
● Buffer limitations may or may not be there 

for a reason
● Other Netizens may austracize you.



  

Congestion Control

● Congestion Control is in place for a reason.
● If every TCP application started using 

parallel TCP, overall performance would 
decrease and there would be the risk of 
congestive network collapse.

● Note that in the face of no congestion 
parallel streams does not help

● In the face of heavy congestion, it can 
perform worse.



  

Buffer Limitations

● More often than not, the system limitations 
are there because that is way it came out 
of the box.

● It requires root privilege to change them.
● However, sometimes, they are there 

because of real resource limitations of the 
host and you risk crashing the host by 
over-extending its resources.



  

Cheat enough, but not too much

● If your use of parallel TCP causes too many 
problems you could find yourself in 
trouble.

◆ Admins get cranky when you crash their 
machines

◆ Other users get cranky if you are hurting 
overall network performance.

● Be a good Netizen



  

When should you use
Parallel TCP?

● Engineered, private, semi private, or very over 
provisioned networks are good places to use 
parallel TCP.

● Bulk data transport.  It makes no sense at all to 
use parallel TCP for most interactive apps.

● QOS: If you are guaranteed the bandwidth, use it
● Community Agreement: You are given permission 

to hog the network.
● Lambda Switched Networks:  You have your own 

circuit, go nuts.
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