The Dynamic Grid

Jon Weissman
University of Minnesota
Department of Computer Science
National E-Science Center

AboutMe

Associate Professor of CS

Strong sense of loyalty
— working in Grid-like systems since 1995

Original member of Legion group

— greatideas, o radical, revolutionary

Our philosophy

— live within the ecosystem

Ongins of the title

A) Thilo asked for an abstracttitle QUICKLY?
B) Sounds like a cool term- why not?

C) Upon reflection, our research seems to be captured
by this concept?

D) All of the above

Answer:

Ongins of the title

A) Thilo asked for an abstracttitle QUICKLY?
B) Sounds like a cool term- why not?

C) Upon reflection, our research seems to be captured
by this concept?

D) All of the above

Answer: A

Ongins of the title

A) Thilo asked for an abstracttitle QUICKLY?
B) Sounds like a cool term- why not?

C) Upon reflection, our research seems to be captured
by this concept?

D) All of the above

Answer: C (ust kidding)

Ongins of the title

A) Thilo asked for an abstracttitle QUICKLY?
B) Sounds like a cool term- why not?

C) Upon reflection, our research seems to be captured
by this concept?

D) All of the above

Answer: D

A Definition

* Dynamic: ‘telating or tending toward change”
* This describes the run-time behavior of distributed systens!

* Dimensions of dynamismiin distributed systerms
— Iesources
— demand
— behavior

Dynamism

* Resource dynamism

— more than one computer is involved, so | probably don't
own themall

— likely that | don’t own the connecting network

* Demand dynamism
— distributed systerms promote sharing (think: client-server)
— demand isn’talways known a-priori

Dynamism (contd)

* Behavior Dynamism

— people involved: resource providers, job submitters, end-
clients, sys admins, network admins

— their actions may change with time

* All of this makes distribul

yet HARD

ems research fun

ed sys

Gnd Dynamism

* The Grid ‘“lives”at the upper-end of the dynamism spectrum
— resources X demand X behavior

* Dynamismis a good thing
— flexible systens emerge

— assume the worst

* Lany Peterson, Pl of PlanetLab “inferior railroad tracks lead to superior
locomotives”

* However, it must be managed

Master Class Thoughts

* We'l have a chat about ‘the Dynamic Grid”

* Mixture of prior research and open problems

antissues and

* Goals: expose you o some of the impor
opportunities

Questions?

Master Class Roadmap

* Four modules

* Dynamic Resources + Behavior
* Dynamic Communication

* Dynamic Metrics

* Dynamic Architectures

Collaborators

* Abhishek Chandra, UMn
* AdamBarker, NeSC

* Students: Jinoh Kim, Darin England, Krishnaveni
Budati, Rahul Trivedi, Vasumathi S undaram

* Sponsor: National Science Foundation (NSF):
CNS-0305641

Context Environment

* RIDGE projct - ridge.cs.umn.edu
— reliable infrastructure for donation grid envs

* Live deployment on Plane

b - planet-lab.org

— 700 nodes spanning 335 sites and 35 countries

— emulators and simulators

* Applications
- BLAST
— Traffic planning
— |lmage comparison

Dynamic Resources Behavior

* Open Distributed System
— Condor, BOINC
— Nodes join voluntarily and behave unpredictably

* Exploit these nodes to perform computations
— Individual jobs
— Host compute- and data-oriented services (BLAST)

Challenge

Nodes are unreliable - crash, hacked, chum, malicious,
misconfigured, slow, eftc.

- > 1% of SETI nodes ‘theated” to improve tumaround time

How can we insure (1) comrectand (2) timely results?

Result verification techniques

— application-specific verifiers - notgeneral - and don’timprove
timeliness

General solution: redundancy + voting

Replication Challenges

* Howmany replicas?
— too many - waste of resources
— too few- application suffers

* Mostapproaches assume ad-hoc replication
— under-replicate: task re-execution (" latency)
— over-replicate: wasted resources (v throughput)

* Using information about the past behavior of a node, we can
intelligently size the amount of redundancy

SystemModel

Woarker group A Task Server Reliability Worker group B
assigned to task X Rating Store assigned to task Y

\)\! K / - IrTfected node

e F 4 .
S '. NETWORK E
i N il
I ' of o ~

“., Reliable node "":Q'
: e Malicious node

Problerms with ad-hoc replication

" Unreliable node

Task x
sentto

Reliable node

Note: fixed size groups (size 5)

- I
Task y X
sent to ‘
group B N \x{/.

iy e

System Model

 Reputation rating r- degree of node

reliability (09) (09)- @

-

+ Dynamically size the redundancy based *~—7~
onr. |

* Note: variable sized groups

Maan Rating Bror

ri(t) =

How to compute r?

n;(t) + 1 # correct => but what is correct?

f"ﬂ:{t} 49 # total tasks

"nautral®

"passimistct

"optimistc’
"varfflcation® ———

ptimistic: in the majority, ++, others -

essimistic: no majority, -- to all

eutral: no majority, do nothing
erification: always right

400 GO0 200 1000

Question

* Whatassumption is optimistic making?

Question

* Whatassumption is optimistic making?
— maprity is always right, hence no collusion

* This may be dangerous - can you think of
examples?

Question

* Whatassumption is optimistic making?
— maprity is always right, hence no collusion

* This may be dangerous - can you think of

examples?

— Same virus attacks machines

— Abadpa

1 Or code given to a setof machines

Smart Replication

* Reputation
— ratings based on past interactions with clients
— simple sample-based prob. () over window T

— extend to worker group (assuming no collusion) => likelihood of
correctness (LOC)

* Smarter Redundancy
— variable-sized worker groups
— intuition: higher reliability clients => smaller groups

Tenms

» LOC (Likelihood of Correctness), A

— computes the ‘actual’ probability of getting a correct answer from
a group of clients (group g)

o TargetLOC (A,

— the success-rate that the system tries to ensure while fonming
client groups

— related to the mean of the reliability distribution

LOC Functions

Function for LOC

2k+1 2k+1

- .5,' 1-7 1-¢;
m;H@ Zk” ﬂr; (rl)

g izl
Dgl,...g2k+1: gl:mD
i Z]

Function for lower bound of LOC

2k+l1 k+1
= é i i a, =
m=k+1 m i=1

Performance Metrics

* Guiding metrics
— throughput p # of successfully completed tasks in an
interval

— success rate s: ratio of throughput to number of tasks
attempted

Algorthm S pace

* How many replicas?

— algorithms compute how many replicas t meeta
success threshold

— first-, best-fit, mndom, fixed, ...

* How to reach consensus?
— M-first (better for timeliness)
— Maprity (better for byzantine threats)

S cheduling Algorithims

First-Fit
- attempt to form the first group that satisfies the target LOC while
considering the relative client ratings

Best-Fit

- attempt to form a group that best satisfies the target LOC while
considering the relative client ratings

Randomt-Fit
- attempt to fonm a random group that satisfies the target LOC

Fixed-size
- randomly form fixed sized groups; ignore client ratings

S cheduling Algorithims

* Different size groups may result
 Ordernodes bvr.

Algorithm 2 First-Fit (w worker-list, 7 task-list, A4 target LOC, R,,,;,, min-group-
size, 1, max-group-size)
i- Sort the list w of all available workers on the basis of the reliability ratings r;
» while w| > R,,;, do
3. Select task 7; from 7

4 repeat

5: Assign the most reliable worker w, from ¢ to &,

&: W — W - Wy

7. Update)\,

s until (\; = Mgpger AND |G| = Ryin) OR |Gi| = Riax
o- end while

S cheduling Algorithms (contd)

Algorithm 3 Best-Fit (w worker-list. 7 task-list. Ay, g0+ target LOC, R,,;,, min-group-
size)
i- Sort the list w of all available workers on the basis of the reliability ratings r,
» while |w| > R,,;, do
;- Select task 7; from 7
s+ Search for a set s of n workers w,, from w such that A\, exceeds Agge¢ Mini-

mally
- if such a set s 1s found then
6 Assign the w,, workers to G,
7 else
g: Select the set of n workers s for which A¢g,ger — A 1S minimized
0 Assign the w,, workers to G,
1. end if

1 W= w-1u,
end while

._.
b

Different Groupings

)}arget - 5

Warker nodes with reliability ratings

@@@@@@@@

First-fit

(69 /,l ﬁ I/L'I 7 @ ﬁ ﬁ @
......... L Qﬁ....ﬂ&ﬁ?e_______fx.._____ Lm: n:HE.

Bestit

LQ(; EE1D f'x LOC =0566

E valuation

* Baselines
— Fixed algorithm: statically sized equal groups uses no reliability
information
— Random algorithm: forms groups by randomly assigning nodes
until A, is reached

* Simulated a wide-variety of hode reliability distributions

E xperimental Results: correctness

Throughput (Tasks/Round)

tn

B

—
_ 1T
1

—
=
]

Uniforrn Mormlow MormHi Heawlo HeawHi Bimodal
Worker Reliability Distribution

B First-Fit @M Eest-Fit B Fandom B Fixed |

Uniforrn MormLow MormHi HeavyLo HeavyHi
Worker Reliability Dis tribution

BmFirst-Fit MBest-Fit BRandom EFixed

Birmodal

This was a simulation based on byzantine behavior ... majority voting

Overhead

best fit

& of call ks to LG functson

1
o

o
o

&
o

iE
L

LE

L=z Maires Léw Meins Hgh Hereep Les Humrey Hgh

Wiker Rallanilty Distribution

|DFIELFit BT hi-=If ORandom |

Himesdal

q
E &
g &

ol

nct

& of cals toLOG fu

-3
[

i
[

o
&

3

&
2

3

i

L= hiodtTnl L HEimal Hgh Hadsy Liss Aewrep Hgh Es vz
WaEar Rallabllity Dieiribution

|o Frst-=1t BT m-F2 O Rangom|

(a)Network size=100

(b)Network s1ze=1000

Non-stationarity
* Nodes may suddenly shift gears
— deliberately malicious, virus, detach/fejoin
— underlying reliability distribution changes

* Solution
— window-based rating (reduce® frominfinite)
- adaptdeam A, .
* Experiment ‘blackout’at round 300 (30% effected)
ol \ ' |
| :
a4} | &
a2 | .
| |

ot 0]
g - .\“ ‘ fll
i . / PLNW“ h 'ﬂlml W 'Ill
) Z | ZZ WUH. ﬂll"\]‘”(ﬁrl'w‘j JII\[J'*MI ‘F lf’ﬁﬂ ¥ MMMWIM AWJWHM \J'!t
. ooy i

RRRRR

RRRRR

Role of A,

* Key parameter
* Too large
— groups Will be too large (low throughput)
* Too small
— groups Will be too small (low success rate)
* Adaptively leam it by maximizing p* s
~ ‘goodput”

— or could bias toward por s

Adaptive algorthm

* Multi-objective optimization
— choose target LOC to simultaneously maximize
throughput p and success rate s

— use weighted combination to reduce multiple objectives to
a single objctive

— employ hill-climbing and feedback techniques t control
dynamic parameter adjustment

255 Rate

5u

Fig.

T
T

.84

0.83
.82 F

2.91

0.8%

9.

Adaptive Algorthm

throughput

|

success rate

(ﬁ?'gj:ﬂ-+ﬁ+(1_&-}+51

T I I“E-1[:;l'La—n:n:linl:\-s.rE—Erl'l
" -u._\-
\,
.‘_1.
T
.
.
\.
1 1 1 1
] 2 0.4 1]
alpha
(a) Success Rate

“Flpha—:cqpare—xpu?“

28

o 24

a

L

=

2 o2z

u]

(W

=

=
18
1e L

0

0.:

4

0.4 0.6 0.3
alpha

(b) Throughput

Comparison of throughput/success rate achieved using adaptive algorithm with varying o

Algorithm 1 UpdateTargetLOC (Mgt target LOC, o throughput-weight)

: Local variables: s state, d direction

1
2:
3: if (round % p) =1 ... p-1 then

4: Update measures of mean normalized throughput xp and success rate sr
5: else

6 if s = CONVERGING then

7 if round = p then

Set initial direction d based on mean client reliability

O: Jj—4

10: end if

11: Glast — G

12: Gain G — a * xp + (1-a) * sr

13: if G/ Grow: > dpdmmd then throughpUt success rate
14: j—j—1

15: Switch direction d

16: if j = 0 then

17: 5 «— STEADY-STATE T .
18: end if G(ﬁﬂsj_ﬂ+ﬂ+(l_ﬂ}+51
19: else if G > Gauy OR G /[Giu < delta;, then
20: if d = left then
21:)\f-_“-,-geg —)\f_ag-g(_af_ - [)O_li__,u‘
22: else
23:)\f'.cm'yt’f. — Atm'gei‘. + (]”11}
24 end if
25: else
26: Atarget unchanged
27: if A\iarger unchanged for maxrounds rounds then
28: s «— STEADY-STATE
20: end if
30: end if
31: else
32: Gain G — a * xp + (1-a) * sr
33: if G / Gioee = deltag,;, then
34: 5 «— CONVERGING, j — 4
3s: end if
36: Gavg — weight .y * G+ weightyig ¥ Gaug
37: end if

38: end if

Adaptlng)Ejrget

* Blackout example

Going Parameteriess: Throughput

Xput comparison - BF

g

25
20
154
10+ @ Min
. m Adapt
O Max

Max
Adapt
Min

BF -Uniform
BF-NormLow
BF -NormHigh
BF-HeavyLow
BF -HeavyHigh
BF -Bimodal

Success-rate

SR Comparison - BF

Max

BF -Uniform
BF-NormLow
BF -NormHigh
BF -HeavyLow
BF -HeavyHigh
BF -Bimodal

O Min
B Adapt
O Max

convergence rate: 150-350 rounds

Timeliness

* Whatis timeliness?
* Two viewpoints
— (1) soft deadlines

* user interaction, visualizing output from computation

— (2) hard deadlines
* need to get X results done before HPDCNSDI/.. deadline

* Startwith (1)
* Live experimentation on PlanetLab

Time (seconds)

Time (seconds)

70

60

50

40

30

20

10

120

100

80

60

40

20

Some PL data

T ' '
o B B
m -
. 2y g s g

20

Computation Heterogeneity

- both across and within nodes

PlanetLab — lower bound

Communication Heterogeneity

- both across and within nodes

RIDGE

* RIDGE scheduling framework on top of BOINC
* PL Grid - 120 dispersed worker nodes

* Testapplication - BLAST, a Bioinformatics application for
genoImic sequence comparison

* M-First (M=1) consensus
* Assume fully correct

RIDGE Scheduler

RIDGE Reputation-based

< Scheduling Server

| tati |
Hhﬁg:: Eg::-l Schaduler -|

| g ‘
e 1

RIDGE -
DB

-| Re-Scheduler %

"\.,_,_‘_‘_‘ Rasulls

Vailldalor

CGl
Col

B
=

Witarketatoen

=

Wikarkslabian

Parcentage of workisme

PL Timeliness Trace + S oft deadlines

i i 100
I ' ' I I ‘-":I 'n-".'I:l'!‘.ErE-IIZII I ' ' I I ‘-":I 'n-".'I:l'!‘.ErE-IIZII I I ' I I ‘-":I 'n-".'I:l'!‘.ErE-IIZII
&l . . SF . P
g 2
& |- . 2 af . 3 ml
o o
& &
40 - 8 a - 8 wif
] B
b -
i b
- o - o -
<4 T <4 H T ol
1 ||_||.—.| ||—|||_|||—|||_|||—|||_|| 1 ||_||.—.|.—.||—||.—.| L1 T 1y 1 ||_||.—.|.—.|.—.| =Nl P E A N
01 0.2 0.3 04 05 05 07 05 0.9 1.0 01 0.2 0.3 04 05 05 07 05 0.9 1.0 01 02 03 04 05 05 07 06 0.9 1.0
Worker Rellablity Distibution Worker Rellablity Disiibution Worker Rellabiity Déstribuion
{a) Low Belability Environment (LowBRE): () DModerate Reliability Enovironment () High Feliability Environment (HighRE):

Execution-Threshold=120s (ModBRE): Execution-Threshold=1803

reliability = # tasks completed by deadline/total tasks

Execution-Threshold=240s

Mean Error

Leaming Rate

0.25 T | | I 1 1
LowRE ——
ModRE ---»---
02 | HighRE ---%-- |
015 -
01 F -
s 3 L
005 F -
|:|] 1 1] 1 1]
Thr 2hr ahr ahr ahr ghr Tnr

Figure 7: Learning Behavior of RIDGE

1
0.4
{Desired)
0.75
m
o
1
i 0.5
0
£
0
3
oy
0.25

Performance of BOINC: Timeliness

L L L] LI rrri BSDD rrri] | LI LI
e | - = Grpl EXSY
5 g =] ‘:i Grpl s & 3000 F frp%
35 A -y Gip2 B el it
"N # 'S Grp3 e T og Grpd EEHH
Ny ; g ¥ R Grpa st S 2500 Grp5 —
pa 1 X . G . ~ p—
N e ¢ R s & GG Fmmie
n"l 5) [Grp6 s C = 2000
P’ | . L] 3 m -
5 9 R 52 ool Ne
\ % 2% 5 o T N
N F R & =
| N B iy ¥ . 5 1000 | N
N gs 5 B 5 g
s Py ¥ g 500 | [N
o g o % = ot
21 |"§|| 'R 0 SEEN 1 04 1l L1l 2
HighRE ModRE LowRE HighRE ModRE LowRE

Worker Reliahility Distribution Worker Reliahility Distribution

(a) Success-Rate (b} Throughput

Figure 8: Comparison of different BOINC confi gurations.

best replication factor varies

0.4
(Desirad)

Success-Fate

Experimental Results: timeliness

| . 3500 . , , J
R 2 z RIDGE
.': ':ﬂ-r" =N = =
S BOINC' ESS< ¢ OET BOINC”
07e e RIDGE exzmEm % : ~
o i o BOINC™ iz T 20| B
s 5;* ',j SE \;S.
et 235 2000 FINNGSE
0.5 | g s . 53 o
C N T o N
- et = 1500 \: ¥
Jq“h:E ‘_,! BT "’E = L \- = _—
EE:?-E ,‘:‘! G :'J: E -“:“:”:l | s r‘: “‘E
0.25 | NEE “ i - : N
l:u“+ R *y L . —- x x ,"“l"i
-'1 A " = 500 F o
2 T 1 - L
S -'; g < >
A B . L I

EsSS]

=r A
[M L |

HighRE ModRE ModRE
Worker Reliahility Distribution Worker Reliahility Distribution

(a) Success-Rate (b} Throughput

M-first (M=1), best BOINC (BOINC*), conservative (BOINC-) vs. RIDGE

Waorkunit Makeaspan (in secs)

Makespan: RIDGE vs. BOINC
sk level

250 . . ,
BOINC EXX=
RIDGE mramm
200 | -
150 | -
o P
B E““}é
100 f Ry ﬁl“;: -
ﬁ& :{N‘:
A o
50 | R N -
] t":" 2
R AN
I:I L"\.E".‘x\."- h::.“": :‘
HighRE ModRE

Worker Reliability Distribution

Figure 5: Makespan Comparison

Request Makespan (in secs)

1EI:”:Il | | | | | 5 | |
EIRI::I”]NGCE
1400 -~ 8 2000 ¢
1200 - 0
1000 - 'g 1500 |
o
800 - o
i N =
600 1 2 '™
j:
- —
400 z,r 500 b ,J__,;c———r-)t‘"'f*_d_“
200 - i v
-
D [[[[[[':' [[[[[[[[
2 3 4 BT 8 1 2 31 4 5 E 7 8

Makespan Comparison

application level

No.of workunits per Request No.of workunits per Request

(a) HighRE Makespan (b) LowRE Makespan

Figure 11: Comparison of Request Makespan for different reliability environments

Future Work

* Mechanisns t retain node identities (hence r;) under node
chum
- ‘hode signatures’that capture the characteristics of the node
* Conbine timeliness + correctness
* Clientcollusion
— Detection: group signatures
- Prevention:

. Uses quizzes (ground-truth); server should run tasks occasionally
. random group formation

Computational Makespan

compute dominates:
BLAST

Reducing makespan requires not only smart redundancy and
scheduling, but smart decomposition

Makespan

ucing

Red

[&
[

TR]

T

...
Y TR
S R
R Y

[
f:

[

B e S S S S SO S S iaOa SRS OOaa S S Gada Bt tal

L L L L b e L O L L EEEE

3oa

{SPUDIaE) SUTL

Observed Capability

HU Distribution

Horkload Distribution 5Stratepies

d

Fine=Grained

Coarse=Grained

d

-Slze

lable

varia

-Slze

equal

Hard Deadlines

e Sometimes deadlines are hard

* The task which simulates a key parameter that finished
after HPDC deadline may not be useful

* Many other real-ime scenarios

* Challenge 1s again the time variability of open
distributed systens

Timeliness Definition

.
2
=

T{D)

Cumulative Probability

Worker Response Time

Timeliness: Ti(L) = C'DEF (D)

T

Group timeliness: ta(D)=1—]](1—-n(D))

=1

Redundancy

* Two workers W1 and W2 with timeliness of .8 and .
6 respectively for D=100
— Objective is .9 reliability for a task (TSR)
— Cantdoitalone

* Assign both to the task => .92

'
(D=1 — 1_[[1 — (D)
i=1

EDF (eartiest) vs. LDF (latest)

Tasks T1, T2, T3 with successively higher deadlines
Three workers W1, W2, W3

T1 has D1 and needs all three workers

T2 and T3 have D2 (D2 > D1), any single worker will do)

EDF: pick T1; T2 and T3 cannot run, tput = 1
LDF: picks T2 and T3, tput =2
Coupling redundancy and deadlines is tricky

EDF vs. LDF

* |LDF has good tput, but is it fair?
* T1,T2 have D1 and T3, T4 have D2 (= 2 * D1)
* Need both workers to meet D1 but either for D2

At =0, task pool has {T1,T2, T2, T4} and the worker list is {W1,W2T, The
same workers return at t,=01.

o '
wa‘] [Wz\] I/WIX] \]
M A NS o, cobeb
O o —~ T1 B T2 expire
A A ‘
Emlam i . s
EDF 4 |
|{€’7 T2 || T2 || T4 I ///g% | T
s | 7
g J v | R |
| |
tl:I:D t]_:D].
e e N o e r— - - - - - —
e | |
wor i[5 (2]) : J
_____________ _ s, ‘i e, "o i ‘s

* Both have a tput of 2 but LDF is unfair to short D

The Metrics

2
i
} Chere e — X; ~ of tasks completed in bin |
T TP, # of tasks in bin i

fairness: [

tput = ~ of tasks completed by their deadline

Generalization

* LRED
— Limited Resource S cheduling Eartiest Deadline

* Balance
— Tasks requiring more nodes (shorter deadlines) reduce tput
— Favoring tasks with shorter deadlines improves faimess

(doesn’tstarve longer deadline tasks since their deadlines
get smaller with time!)

Intuitive Behavior

* Pick task groups with smaller resource
requirements (o a point), larger D => fput

* Within each group of tasks, sort by eartiest deadline
=> faimess

The Idea

N - Total no. of tasks m the task pool
L : Total no. of workers available at the scheduler

Si - Set of tasks with ascending deadline values each of whach

can be completed with probability TSE by the workers {W), ... Wy}
fork=12__ . max 5 could be empty.

S = Set of tasks that cannot be completed with probabality TSR
by any mumber of workers . {W,......\W }
max = # of workers required by any task

T:I - mow T. T! = = o= Ti = m om T = mom T

can't b'eI|I satisfied by \/T r* " [+ 1 "

i sort each bin by ascending deadline
|
|
|

R R I I R W

" - W,

sort by timeliness - use the mean

Algorithm S tart Points

===» Direction of scheduling

—» Begmmng set in the schedule

Se [Bmx| euennene g, | 5. | 8,
Dby ———+ LREDg --—» LDF gy

LRED(1) = ~LDF
LRED(inf) = EDF

LRED Algorithm

Algorithim 1 LRED(n]

1:
2:
3

[k QY

D 00 =] &h

10

12:
13:
14:
15:

16:

W —5et of all available workers
sort Woin increasing order of 7
sort the task pool in increasing order of D
while W iz non-empty do
Organize the task pool into the list { 51, 52, ..., Smaz | based
on 7 of workers in ‘W
V' — Bet of all tasks in the list {Sn, ..., S2, 51}
if ¥V i1s non-empty then
T «— First task from the first non-empty set S n V
schedule T to k most timely workers
Update W by removing the k assigned workers
else if n < max then
LEEDn+1)
else
break
end if
end while

PL Trace

T A H AR M, TR H T - ~
wm.\ggc i c«m«&m\«m«w&u\%
LY LY LAY I o oo oo P

o

B S

RS B SIS

B R S S]

e R O

20

19 |

1
=] Lo o

sasuodsal Jo Jsquinp

Range of Response times

Results

m
i
5TE5
oS
L L
oo
U
1 | 1 1 1 1
(=) (=) (=) (=] (=] (=) (=]
=] =] (=] [=] =2 (=]
w 'z} =t [3r] 2] -
pojedwoo sysey Jo 'oN
A
[N
i
Ty el ©
P ..Ww.m.@..u.et sl .&.u,,C,Wv.n.,ﬁcw..,“am&,”.h?s.w.@..u Amc ..,....eA T
RPN o e T pEE
s >
R
ey
[N
T
- =
=]
=

EDF =3

LDF E=—==m
LRED(1)

LRED(4) mmmm

08

1
st
=]

1
=
(=]

Xapu| ssaulled

0.

LowTE

ModTE HighTE

Timeliness Environment

LowTE

Timeliness Environment

.9, lowTE [80-150], modTE [120-200], highTE [200-350]

TSR =

Result Summary

* Smaller n for LRED provides better throughput
* Larger n for LRED produces higher faimess

* Canbe tuned

* The throughput-faimess tradeoff

— is more visible than at high loads

— becomes more significantas the overall timeliness level
of the environment decreases

Questions?

Dynamic Communication

* Dynamically selecting data servers
* Dynamically estimating banawidth
* Dynamic workflow optimization

* Allin the con

ext of Grid applications

Dynamically selecting data servers

* Nodes download data from replicated data nodes
— Nodes choose ‘data servers”independently (decentralized)
— Minimize the maximum download time for all worker nodes

(communication makespan)
data download dominates:
image filtering, convolution,
early discard, ...

all results needed -
best, average, ...

Motivation
* Many distributed network applications require
massive data

— HEP, image analysis, ...
— Such datasets are often replicated to data servers

* Challenges in data delivery

— Proximity of clients to data servers
— Unreliability and heterogeneity of data servers
— Load balancing

Data node selection

* Several possible factors ”
~ Proximity (RTT)
— Network banawidth
— Server capacity

20

Download Time
m

a 1 1 1 1
0 a0 100 150 200 250 300

RTT (ms)

[Download Time vs. RTT - linear]

Mean Download Time

1000
100 " . .
o / H % x x 256K
800 90 |1 |l $ g _L_i 512K u
fl ¥ + 1M
< 190 // +tUX a0y l|I lﬁ i . | am
—&— amu § +* exp(0.5/bw) ||
§ 000 * o ?D I| !é A — =~ exp(1.0/bw)
E 500 —-— * /‘%- venus & @l it i *
qE) 400 / ksu E &0 1‘ i
=3 I|
= 300 _= —x— ubc 3 1 E
£
200 / /x/ —e— wroc 5l ik :
Pa— 3
i
100 - ? - k\ :
0 10+ \\\ +
1 3 5 7 10 . , ,?,‘,:}“—::h——_—_q____ |
10 10

Concurrency Banduwidth (Mbps)

[Download Time vs. Bandwidth - exp]

Server Selection S trategy

* Based on observations
- Servers with low banawidth (e.g. < 1Mbps) are to be avoided

* evenif RTT is small

— Servers with high banawidth (e.g. > 10Mbps) are to be favored

* use RTT as a discriminator

- Servers with medium banawidith (e.g. 1-10Mbps) are best
discriminated by system load

Heuristic Ranking Function

* Query to get candidates, do RTT bw probes
* Node i, data server node j

— Costfunction = rtt;* exp(k. bw;), k.load/apacity
* | eastcostdata node selected independently
» Three server selection heuristics thatuse k.

—~ BW-ONLY: k.= 1

— BW-LOAD: k. = n-minute average load (past)

— BW-CAND: k; = # of candiaate responses in lastm seconds
(~ future load)

Performance Comparison

40

R FROXIM

35| | I BW-ONLY
[0 BW-LOAD

_1BW-CAND|

Ll
=

[
o

[
=

wn

Download Time (seconds)

Average Makespan

BW-CAND 90% Completion PROXIM 90% Completion
(~ 30 sec) / (~ 70 sec)
o

T T A T i e
PR , ; PROXIM
09 . -f""-.-_ - = = BYW-ONLY |-
| - BRI BW-LOAD
0.8 BW-CAND|
0.7 -------- (Unit: second)
5 06 Percentile | PROXIM | BW-CAND
: -
O
5 05 15t Quar. 13.3 10.9
S
S 04l Median 21.9 16.3
LL
0.3 3rd Quar. 33.0 23.2
0.2 95th (%) 95.4 36.4
0.1 99th (9/4) 192.6 59.1
i i i i i |

80 100 120 140 160 180
Makespan (seconds)

90

80

Makespan (seconds)

Impact of Loading

I PROXIM

B BW-0ONLY
[1BW-LOAD
[|BW-CAND}--

10
Concurrency

Makespan (sec)

200

150

100

50

higher variance |

: i .

I 1
BWCAND(C15) FROXIM{C15)

Comparison of Individual Experiments

60
R FROXIM
B BV -ONLY
50¢-- - [1BW-LOAD |
[|BW-CAND

Different server configs

Tabl . Server Bandwidth Distribution
Class 15 Mledium High
= 1A s 1 — lﬂ‘lfhl.:-:-c == 10 II-:'jl.l.*-:
EX-1 5% SGE 67 G
EX-2 | 2% @ B2%
EX-3 0% 24 TOo
EX-4 0% 245 Ta%

Take away

* Bandwidth, proximity, load, and capacity all matter!

* Both heterogeneity and load balancing must be taken
into account

* Butreliance on RTT and BW measurements

Dynamically Estimating Bandwiath

* Bandwidth, RTT estimation can be applied to:
— prior situation (many workers, many data servers)

* Compute-oriented applications(e.g BLAST)
— similar o prior situation (many workers, many data servers)
although communication is less of a b-neck

* Worker selection for dai

asks

ensive |

a-n

— where to place workers?

Dynamically Estimating Banawidth

* Data-intensive computation needs access to one or
more data sources - data may be very large

- bwprobes to o expensive
-

=~

O

The Problem

* Where o run a data-intensive computation (or place a
worker)?
— froma set of candidates

* Unlikely a candidate knows downstream bw from
particular data nodes

* |dea: infer bw from prior observations or from
neighbor observations wi to data nodes!

* Simplify presentation: single worker, no replication,
single data objpect

Download Speed (KB/s)

S ome Observations

Correlation between RTT and Download Speed

cor = —0.56

RTT and Download Speed

Download Speed (KBis)

Commelation between Past Download Speed and Download Speed

1200
— ‘ Eﬂr—,ﬂ.ﬁﬂ 1
L & ': 1
|] L : :
Em- a -) : : [E . 7
L . 1
' Y : |
600 LI = i
; H ': [
'. !E b [' a : i
400 . n -.'1 Rk |
] 3 - 3 L !
%l ;'| AfLE: , ‘
200 gl ;
- .) ! |) ' 1
Nl g |
1. bl -
0 _‘L I ‘jli!l. ol i M k] LT
o 80 100 150 200 280 300 350 400 450

Past Download Speed (KB/s)

Past Download Speed to Download Speed

Estimation Technique

 C, may have had litlie past interaction with D
- ... butits neighbors - ‘n’iave

* For each neighbor generate a download estimate:
— DT: prior download time to oD neig@r
— RTT: fromcandidate and neighborto ~ resp@vely

— DP: average weighted measure of prior download times for any
node to any data source

Estimation Technique (contd)

* Download Power (DP) characterizes download capability of a node
— DP =average (DT * RTT)
— DT notenough (far-away vs. nearby data source)

» Estimation associated with each neighbor n
— ElapsedEstn]=a-B-DT
* a:my RTTheighbor RTT (0)

* B :neighbor_DP fny_DP (O
* No active probes: historical data, RTT inference

* Combining neighbor estimates
— mean, median, min,
— median worked the best

* Take a min over all candidate estimates

NEIGHBOR

1 5

1 Hn’i‘ LIE e)
DFy, = m 2 ('Hi.ﬂiﬂps-ﬂ P H-L.ELSEL.EHEE‘-‘_.)

Neighbor Estimp(n.o) = a - 3. elapseg(o)

where

DFE, 3 distancey | server(o))
(v = L F = — .
DFy distancey,(server(o))

Neighbor Estimplo) = mediang, ey (NetghborE stimy(n;, o))

1 IHa |
Ihstancep, = —— - E Hy . distance
Hel

H:'E'H'i- TE
H; elapse

1
DownSpeedy, = m : Z
h i=1

-'iﬁ -.I. |
stzelo)

Sel fEstimplo) =8

DownSpeedy,

where | r o
distancey|server(o))«——— must be an active probe

Dhistancep o _ .
this is an issue with 1000s
of candidates ...

RTT Inference

We can do inference if our neighbors have an RTT to the server!
Triangle inequality:

latency (a, c) lies between
Nlateney(a, b) — latency(b, ¢)| and latency(a, b) tlatency(b,]

RTT Inference Relative Error

i T
——L
u
Ao |
Enhanced
O Idea remove Observatlons
: that violate the triangle
E] . R . - T T Inequallty
®
E_. ..
'1 . T / Ours
¥
DU 5 10 16 20 25 30 a5

Mumber of Landmarks {Neighbors)

RTT Inference Result

* More neighbors, greater accuracy
* With 5 neighbors, 85% of the estimations < 16% error

Inferred Latency Difference CDF

F()

0l i 1 i i i i
-150 -100 -50 0 50 100 150 200
Latency Difference (= |Inferred-Measured]|)

Ratio to Omniscient
%] (%] £ ok | [m1] - [mn] [1m]

—

— RANDOM
PROXIM
SELF
-+ =+ NEIGHBOR H

8 neighbors

20

a0

45

i Fad fad fad]
(] MM O O

Mean Elapse Time (sec)

—
n

10

Neighbor size

Impact of Neighbor Size (Mux, N=8, Allocation=50k)

O

.. Trrana H'.IHI.MDDH a

T TEE. BEEERE | RESNRNRRENREREN [REERNRRENRREN RN -—-—-F'H_ﬂx|”
.. EELF a
= = = NEIGHBOR

e e e e B BN BN | e o= e L BN BN BN BN BN BE B |

=
‘ﬂ.
--------------- m-;-;—;.-.---.-.-.-.---.-.-.-.-.---.-.-.-.---.-.-.-.—
et I

.. TR N e e g - -

2 4 8 168 32

Meighbor Size

Mean Elapse Time (sec)

100

o0

a0

70

&0

50

40

30

20

10

Data size

Impact of Data Size (C=8, N=3, Allocation=50k)

A

Ll womowon RARMOOCRT [--- - - e e e a - o !.-
----- PROXIK ‘."

I SELE leeee L L
= = = NEIGHBOR
_.-....".".i Y

- .
|."" o
P T AL InIr et
W .ll'l'
.............................. .q."!.._.l.?'.l:.:-.-.-.-.-.-.-.-.-.-.-.-.-.-.-._
W -
........................ T e T
- J ’,'—.
- -‘...I"
e e R
AT
L
............ -.'.,.-:i.'.'._..-.-.."..-.-.-. oot
_1.#1'
= -
........ - T e e
1B ZnMB 4B anMB

2

2

Mean Elapse Time (sec)

&

=

=

| [elTiN0
I R AMD oM
-FRGHH ...
[1sELF

[INEIGHBOR

blean Session Length

Meighbor Estimation Rate (%)

Meighbor Estimation Rate (Mix, C=8, N=E, Allocation=100k)

— Mo chum

—+— SescionLength=100
—i— BessionLength=1000
—— SessionLength=10000

=10

Take Away

* Locality between a data source and a node
— scalable, no (or minimal) probing needed
— allows for ranking based on bw estimates, provides RTT

* Wide application

— useful in many scenarios based on ranking choices

Data flow optimization

* Workflow architectures

G GO
Ny je S

500 MB

" Orchestration Engna
Terminail - .
‘ A ¢ “.. 3GB

500 ; 1GB %

Visualisation Analysis
WS WS

centralized data and control distributed data and central control

Choreograpny

(“‘3?)(“‘“)

1EE

\ 1-r:ﬂ
1":3
) ““*---DC Amlwdwfs)
1GB
r
Terminal Wisualisation
w)
BOOME

distributed data and distributed control

Comparisons

* Pure Choreography
— More collaborative
- WS-CDL exists but no implementations
— Bestpossible performance
— Requires users modify their services

* Pure Orchestration
— Control and data-flow managed by a central engine
— Worst possible performance
— No service modification required

Middle-Ground S olution

" oE oE oE o®oOER OERR ®ROBR ®RBR®E®"R O®ER R OB ®R B ™ B ®E B o™ ™ W

B N s L

GO GG
MUV Y

proxy is a WS; located
near the service

Proxy API

puklic interface proxy |
//Proxy CORE methods

public String inveokxe (String wsdl,
throwa
boolean
throwse VariakbleNotFoundError,

pukblic

String port,
InvocationParameterError,
deliver (String proxy_wsadl,

String op_name,
VariakleNotFoundError,
String[] dataToMove)

ServiceInvocationError;

Object[] params)
ServiceInvocaticonError;

public boolean
throwa ServicelnveocationError;
Okject[] returnData(Stringl[]
throwse VariakbleNotFoundError;
boolean flushTempData(String []

throws VariableNotFoundError;

puklic

pukblic

stage (Hashtalkle dataTcMove)

dataToReturn)

dataToRemove)

//Proxy ADMIN methods

public veid addService (String wsdl)
throws ProxyAdminError;

public veid removeService (String wsdl)
throws VariabkleMotFoundError;

public String(] listCperaticns(String wsadl,
throws VariableNotFoundError;

public String[] listOpParameters(String wsdl,
throws VariabkleMotFoundError;

public String[] listOpReturnType (String wsdl,
throwse VariakbleNotFoundError;

public Etring[] listServices();

String port)
String port, String cp_name)

String port, String cop_name)

Example

Back to our earlier example

NN ak

) (=2 (=)

[Nl ok
& (=) (=)

L]
LY

RWST Repeat until
: WS-3
Analysia WS
5H-'I1FS1
Visuslization

Orch.
‘ Engina

Example (contd)

0EEYEE B
(W)(“H)(“ﬁ) L) (2) (L)

ilw.'sa

Tz & = | &0
'-':I'51
ackirue
sssss \.
Orch. Visualisation Orch. Vigualisation
Engine W5 Engine W5
R e B

Example (contd)

NN =]
oo) (e) (e) ([(e) (=)

invoke AWS1 pl,mi, " :
e ~@) =

.
inrwsal -

F
47}
1
L
L]
47}

R-AW
r'-'-'-'-'-'-'-'-'-ﬂ e, $R-AWS
Orch, Vizualaation Orch. | Viaualization
Enging W5 Engine WS

Example (contd)

=
(e) (e) (Lee) ([) (o2) (L)

Analysia W5 Analysia W5
-.‘m“vwsp-lim“: @ ‘--.-
I5R-AWSI; N b
1
/ ¢
r Y
F-VWS -
Orch. Visualization Orch. [« $ RVWS /" Visualisation
Engina W5 Engina ~ W5
— —_—

Issues

* Nice research questions
— Proxy selection
— Proxy assignment
— Proximity
— Load balance
* Currently exploring these on PlanetLab

Questions?

Dynamic Metrics

* How o characterize and measure the behavior of
dynamic (Grid) systens?

* Cumrent metrics are absolute and therefore
inadequate

* Dynamismsuggests we need “first derivative”
metrics

Metrics Today

* Typical performance metrics
— exploitand address the connon case
— if application X is given Y resources, then Perf(X, Y) can be
expected
— F=minfrax { avg [Perf(X, Y)] }

* Average performance has always been the metric to
measure SUCcess

— completion time (minimize)
— throughput (maximize)

Traditional Metrics

....................
............ speed
..' ~ ‘,/’ G

(solver . f

user is interested in throughput

.............,,.‘reliéé{'liiiy Eﬁﬁﬁ

o
a8
&?

r[[

user is interested in reliability

. solver - X

Another metric
* Other metrics may be useful for dynamic (Grid) systens

— Average or common case may be less important

* Account for dynamic characteristics

— resource availability is stochastic
— demand is stochastic
— execution time is stochastic

* Robustness

— performance robustness may be as (or more) important than ‘high
performance”

S cheduling for Robustness

‘Robustness is the persistence of certain specified system
features despite perturbations being applied o the system”

* Performance robustness for applications

— small perturbations result in large fluctuations in behavior

— perturbations are inherently unpredictable

- “compressed” variance, yet good performance
* Perturbations

— amival pattems (demand)

— resource availability

— execution times (data-dependent)

Application execution time

* Application execution times are stochastic
* ‘Heavy-tailed”scientific computing application server
— imegular search that results from optimization problens
* branch-and-bound

— highly data- and control-dependent execution times
* solve my NxN systemusing Jacobi... or CG ...

— occasional large request can dominate the workload => this is the
perturbation

— large variance

S tochastic execution times

fix)

Weibull, Exponential, and Normal PDF

1

2LaH

1LEH

17 H

L5 H

EE e EEEEEEE s e e e EEEEEEEE

2.4

1.3

Lz

24

xpananiald - 4)
- —- Mommalii = 4, o= 1) FOF
— Waibulljz - .42, 3= 1.35) PDF

lllllll.l\lll..lllllll.

2 4 g i 1 12 14 16 1a 20

S cheduling for Robustness
* Exarmple 1

application contains two types of tasks
— one nomally distributed (N), the other heavy-tailed (H)
— two machines can run either type of task
— application instance has three tasks
— oneoftypeN (T,)and two of type to H (T, and T;)

* Scheduling
— policy 1: balance based on expected values
— policy 2: balance based on 99 percentile

Task Execution Times Mean {z| P(X < x)= .99}

T ~Normal(4,1) 4 6.33
Ta ~Weibull{0.5, 1) 2 21.2
T5 ~Weibull{0.5, 1) 2 21.2

Schedule Machine A4y Machine Ao
policy 1 => g T 12,15
Sa .05 15

policy 2 =>

S cheduling for Robustness (contd)

* Robustness as a function of makespan

Madne M,

Sehedulz

Schedule 2

M1
Average Case Extreme Case range
Schedule 54 make-span = 4 | make-span =425 |38.5
Schedule S make-span =6 | make-span=27.5 (215
Be nefit'Penalty 2 15

*Robustness as a function of completion time

Demand Exarmple

* Example 2
— independent requests o a service

— heavy-tailed /—H]]]]]] _
- three rmCh]neS . g~ Weibull{o = 42, 3 = 1.35)
* Scheduling

— policy 1: shortest queue
— policy 2: send to machine with most recently started execution (avoid

when same req. running for a while)

* exploits heavy-tailed property that running time is a good indicator of future
remaining running time

©

& ©

* Robustness as a function of waiting time

Demand Example (contd)

Queue statistics for 10,000 observations

Policy Sh gue | Robust scheduling
Mean é 18.3 9.1
Variance 1488 538

25% 0 0
50% 1.5 0
75% 18.8 5.3
95% 90.3 54.7
99% 191.9 108.8

— very simple policy produced dramatically better results

Measurement

* Great- this makes intuitive sense, but how do you
measure it?

Cumulative Distribution Function

X

— (3

* Metric gives us a tool to analyze behavior
* Also useful for exploring system altematives

— scheduling algorithns
— resource provisioning
- efc

RobLlsmess Metric

sup Flx)— FYx)
o e O

MaX

Weighted Is-S Statistic 4,

Metric (contd)

Super-robus

Size of Disturbance

Weighted K-S Statistic 3,

Robust to Heavv-Tailed Property

Weighted K-S Statistic &, vs. Long—running Exection Times

25 | | T | T T | Je

w Shortest queue scheduling

O Alternative scheduling

—
tn
I

|

—
T
1

415 410 405 400 395 390 385 380 375
Shape Parameter o

Backfiling

* Requires user estimates of parallel job run-time and
of desired processors

* Batch mode scheduling

/’“\

57 T s
+y

-

{a) Job1 started at 8:00 am. () Job2, submitted but can't start

Will finish at 10:00 am. since it needs 4 processors.
Remaining 3 reserved by Job2.

//36/1/ Fﬁ\J\nbE Job2 | Joba
Jm@\)h@\ Jdb2 | Job2

(c) At 8:30 am Job3 submitted. {d) At 10:00 am, Job2 starts.
Job3 backfills Job2.

Backfiling (contd)

Disturbance: user under- or over-estimation in waiting time (user behaviol
SDSC supercomputer job trace

Weighted K-35 Statistic §, vs Inaccuracy of Runtime Estimate

149

. Cwer-estimation of nuntime

=T Lingar-gsdmation of runsime]
e
o EEr i
o
m 1.5F E
[41]
w
| 04 i
e
P}
2 asf -
=
& - g
"E_:: 1.2

11k E

i 3 s Ti -+ i - “- o7a 5 i &
_: 1 1 1 1 1 1 1 1 1 1
[10 20 30 A 50 =} Ta EDQ =i} 100

Percent u:uf_ D'J&r."I:.I nder—estimation

Robustness as a function of waiting time

Video Server

Disturbance: demand for videos; performance metric is response time

——= [T} Accapt Comnscton

— 1T

Parsa Packes

To Cliszsi

':D:D Emor Beporter |—
T Chisnt

Eesicve Valen [—=

. | i el

guality

Figure 6. SEDA-based Video Server

&
w

Weighted K-S Statistic

n

4.5

e

el
n

Video Server (contd)

Weighted K-35 Siatistic Ew va. Number of requests

+ Video ssnver
Video server with dynamic service degradation 4

g _F

+
P

I:: o 1 1 1 1 1
1200 1400 1600 1ad0 2000 2200 2400 20600 2800

Mumber of requests

Robustness as a function of response time

Cool Example: Sensor Nets

Figure 4.3: A Small Sensor Network

Goal is to route/aggregate all information to (1)
Links are weighted in terms of cost

Could also refer to any distributed application requiring data
collection

Disturbance: node failure and data loss

Sensor Net (contd)

Different spanning tree routing options our robust approach

8,

=
LE

Weighted K-35 Statist

Results

Weighted K-35 Stafistic o, vs. Number of Node Failures

— = —mET
._E_- ::-

1

/urs

~H is also, but is
poor for battery power

o= 1 1 1 1
K 5 10 15 20

Humber of Mlode Failures

Robustness as a function of data survival

a=

Questions?

Dynamic Architectures

* Our distributed syst

em archi

ure mustbe

el

dynamic to cope with all the other foms of

dynamism...

* Decentralization is the key

Background

* Grids are distributed ... butalso centralized
— Condor, Globus, BOINC, Grid Services, VOs
- Why? client-server based

* Centralization pros
— Security, policy, global resource management

* Decentralization pros
— Reliability, dynamic, flexible, scalable

Challenges

* May have to live within the Grid ecosystem

— Condor, Globus, Grid services, VOs, efc.
— First principle approaches are risky (Legion)

* 50K foot view

— How to decentralize Grids yet retain their existing
features?

— High performance, workflows , performance prediction,
etc.

Decentralized Grid platform

Minimal assumptions about each ‘hode”

Nodes have associated ‘assets” (A)
— basic: CPU, memory, disk, etc.
— complex: application services
— exposed interface to assets: OS , Condor, BOINC, Web service
Nodes may up or down
Node trust is nota given (do X, does Y instead)
Nodes may connect to other nodes or not
Nodes may be aggregates

Grid may be large > 100K nodes, scalability is key

Gnd Overlay

. Grid service . Condor network

Q Raw - OS services . BOINC network

Gnid Overlay - Join

. Grid service . Condor network

Q Raw - OS services . BOINC network

Gnd Overlay - Departure

. Grid service . Condor network

Q Raw - OS services . BOINC network

Routing = Discovery

~

discover A .

Query contains sufficient information to locate a node: RSL, ClassAd,
etc
Exact match or semantic match

Routing = Discovery

Routing = Discovery

Discovered node returns a handle sufficient for the “client” to interact
with it
- perform service invocation, job/data transmission, etc

Routing = Discovery

* Three parties
— initiator of discovery events for A
— client invocation, health of A
— node offering A
o Often initiatorand client will be the same

* Other times client will be determined dynamically
— ifWis a web service and results are retumed to a calling client, want
to locate C,,, near W =>

— discover W, thenC,, !

Routing = Discovery

T~

discover A .

Routing = Discovery

/7

Routing = Discovery

Routing = Discovery

Routing = Discovery

Routing = Discovery

Routing = Discovery

Grid Overlay

* This generalizes ...
— Resource query (query contains job requirements)
— Looks like decentralized ‘ratchmaking”

* These are the easy cases ...

— independent simple queries
* find a CPU with characteristics X, y, z
* find 100 CPUs eachwith X, y, Z

— suppose queries are complex or related?
* find N CPUs with aggregate power = G Gflops
* locate an asset near a prior discovered asset

Grid S cenanios

* Grid applications are more challenging

— Application has a more complex structure - multi-task,
paralleldistributed, control data dependencies
* individual jobAask needs a resource near a data source
* workflow
* queries are not independent

— Metrics are collective
* not simply raw throughput
* makespan
* response
* Qo5

Related Work i ““

i T ol ockmaler
i

Faute - * L

Gemd i

* MarylandPurdue A N

— matchmaking

* Oregon-CCOF

: Local scheduler = * Local schedulei
— tme-zone L
' Community-based overlay nemorks 7

Coordinated scheduling

Coordinated scheduling

Local schediler

Application scheduler

Related Work (contd)

None of these approaches address the Grid scenarios
(in a decentralized manner)

— Complex multi-task dataontrol dependencies
— Collective metrics

50K FtResearch Issues

* Overlay Architecture
— structured, unstructured, hybrid
— whatis the right architecture?

* Decentralized control/data dependencies
- howto doit?

* Reliability

— how o achieve it?

Context Application Model

et

an(

aaaaaa

= component
service request
job
task

Context Application Models

Reliability

Control dependence
—> \ .
[] Collective metrics

Application Models

Reliability
., Control dependence
B Collective metrics

Reliability Example

-

Reliability Example

C

G

<

P

C; (client of G) knows how to initiate G
C; also responsible for G’s health

Reliability Example

-

Reliability Example

-

Reliability Example

-

Reliability Example

-

Reliability Example

-

Component Replication

-

Component Replication

Replication Research

* How many replicas?
— o many - waste of resources
— oo few - application suffers

* Leverage prior work!

Client Replication

-

Client Replication

loc (G), loc (CG,), loc (CG,) propagated

Client Replication

C
G<
D

%

client “hand-off"” depends on nature of G and interaction

Application Models

Reliability
., Control dependence
B Collective metrics

The Problem

* How o enable decentralized control?

— propagate downstream graph stages
— perform distributed synchronization

* |dea:
— distributed dataflow - token matching
— graph forwarding, futures (Mentat project)

Control Exarmple

-

control node
token matching

Simple Example

Ca

>

Control Exanmple

{E, BXC*D}
B
.6} C {E, B*C*D}
G E
iD, G} D {E, B¥C*D}

{E, B*C*D}

Control Exanmple

C

G E
D

{g, Bc*D, @ ?
loc(S;) }
{E, B* C D
loc(S,) } {E, B*C*D,‘
loc(S,;) }

output stored at /loc(...) - where component is run, or client, or a storage
node

Control Exarmple

-

Control Exarmple

-

Control Exarmple

-

Control Exarmple

-

Control Exarmple

-

Control Exanmple

C
G E How to color and
route tokens so that
D

they arrive to the
same control node?

Application Models

Reliability
., Control dependence
B collective metrics

Collective Metrics

* Throughput not always the best metric
* Response, completion time, application-centric

— makespan - response

-
—a

Open Problens

* Support for Global Operations
— troubleshooting - what happened?
— monitoring - application progress?
— cleanup - application died, cleanup state

* Load balance across different applications
— routing to guarantee dispersion

Summary

* Taming the dynamism of open distributed systens is a
challenging endeavor
— Grids ‘pbush the envelope”in this respect

* Grids can offer richer use cases to drive this research agenda
— data X computation X distribution X heterogeneity

* Grids can leam a great deal from other communities
— P2P, network systens

Questions

EXTRAS

(Desired)

Bty L Tl =
SUooEssHale

075

i
tn

EXTRAS -0G

7

HighRE

lodRE

LowRE

Worker Reliability Distribution

(a) Success-Rate

nrougnput

=

sted warkunits/Run)

Nk
e e

C:om

(Moof

2800

az e

2000

1500

1000

500

Worker Reliability Distribution

() Throughput

]] 1
Grp2
wil Grpd =2t
: ™ EI'|':---l [—
Grpf
Grpd —
il
HighRE ModRE LowRE

[Desired)

SucpessHale

0.7s

=
o

1'_1

HighRE

ModRE LowRE
Worker Reliability Distribution

(a) Success-Rate

ut
sted workunits/Run)

hrough

Com

(Ma.of

2800

2000

1500

1000

500

Grp2
Grp3

Grpd
Grpd

HighRE

ModRE LowRE
Worker Reliability Distribution

(&) Thronghyput

EXTRA - COMM

Combining Neighbors’ Estimation

0.91
03 %= -
0:89 Lo e AT e T
i
AN
@ 08Bl —_—
8 ' <
B 087 b e . —o— RANDOM |...
2 CLOSEST
§ 0861t e —+—MEAN | |
— 4+ MEDIAN
085 ; RANK
R B I A WMEAN [
— 5— TRMEAN
0.84| ...\
0.83 1 L 1 L L
0 5 10 15 20 25 30

Neighbor Size

* MEDIAN shows bestresults - using 3 neighbors 88% of the time error is within 50%
(variation in download times is a factor of 10-20)

RTT Inference

* >=90-95% of Intemetpaths obey triangle inequality
- RTT (a,¢) <=RTT (a,b) + RTT (b,)
— RTT (server, c) <= RTT (server,n) + RTT (n, ¢)
— upper- bound
— lower-bound: |RTT (server,n) - RTT (n,c) |
* jterate over all neighbors to getmax L, min U
* retum mid-point

Other Constraints

{E, B*C*D}

{C, A, dep-CD c (E BCD}

A E

D, A, dep-CD
{ P D {E, B¥C*D}

C & D interact and they should be co-allocated, nearby ...
Tokens in bold should route to same control point so a collective query
for C & D can be issued

Other Constraints

{E, B*C*D}
B
(C, A} c |{E, B*xC*D}
A E
b, Al D {E, B¥xC*D}

C & D interact and they should be co-allocated, nearby ...

Token loss

* Between B and matcher; matcher and nextstage
— matcher must notify C, when token armives (pass loc(C;) with
B’s token
— destination (E) must notify C; when token arrives (pass
loc(C;;) with B’s token

=\

(8 é?e‘

Ihroughput
(Mo.of completed Requests/Fun)

Throughput Comparison

1 1 1 1 1 1 1 ¥ 1
- BOINC —— = 400 k
2500 RIDGE —x—- =
5 1200
2000 | . 0
- .2 1000 b
28
=y
1500 - £ go0
:l'l'}
o
£ 600 |
- - — O
1000 -
g 400
500 = i =
= 200
D 1 1 1 1 1 1 1 1 - D
1 2 3 4 i G 7 8 1 2 3 4 5 G
Mo.of workunits per Request Mo.of workunits per Request
{(a) HighRE Throughput {(b) LowRE Throughput

Figure 12: Comparison of Request Throughput for different reliability environments

No loss in throughput

