
The Dynamic Grid

Jon Weissman
University of Minnesota

Department of Computer Science
National E-Science Center

About Me

• Associate Professor of CS

• Strong sense of loyalty
– working in Grid-like systems since 1995

• Original member of Legion group
– great ideas, too radical, revolutionary

• Our philosophy
– live within the ecosystem

Origins of the title

A) Thilo asked for an abstract/title QUICKLY?
B) Sounds like a cool term – why not?
C) Upon reflection, our research seems to be captured

by this concept?

D) All of the above

Answer:

Origins of the title

A) Thilo asked for an abstract/title QUICKLY?
B) Sounds like a cool term – why not?
C) Upon reflection, our research seems to be captured

by this concept?

D) All of the above

Answer: A

Origins of the title

A) Thilo asked for an abstract/title QUICKLY?
B) Sounds like a cool term – why not?
C) Upon reflection, our research seems to be captured

by this concept?

D) All of the above

Answer: C (just kidding)

Origins of the title

A) Thilo asked for an abstract/title QUICKLY?
B) Sounds like a cool term – why not?
C) Upon reflection, our research seems to be captured

by this concept?

D) All of the above

Answer: D

A Definition

• Dynamic: “relating or tending toward change”

• This describes the run-time behavior of distributed systems!

• Dimensions of dynamism in distributed systems
– resources
– demand
– behavior

Dynamism

• Resource dynamism
– more than one computer is involved, so I probably don’t

own them all
– likely that I don’t own the connecting network

• Demand dynamism
– distributed systems promote sharing (think: client-server)
– demand isn’t always known a-priori

Dynamism (cont’d)

• Behavior Dynamism
– people involved: resource providers, job submitters, end-

clients, sys admins, network admins
– their actions may change with time

• All of this makes distributed systems research fun
yet HARD

Grid Dynamism

• The Grid “lives” at the upper-end of the dynamism spectrum
– resources X demand X behavior

• Dynamism is a good thing
– flexible systems emerge
– assume the worst

• Larry Peterson, PI of PlanetLab “inferior railroad tracks lead to superior
locomotives”

• However, it must be managed

Master Class Thoughts

• We’ll have a chat about “the Dynamic Grid”

• Mixture of prior research and open problems

• Goals: expose you to some of the important issues and
opportunities

Questions?

Master Class Roadmap

• Four modules
• Dynamic Resources + Behavior
• Dynamic Communication
• Dynamic Metrics
• Dynamic Architectures

Collaborators

• Abhishek Chandra, UMn
• Adam Barker, NeSC
• Students: Jinoh Kim, Darin England, Krishnaveni

Budati, Rahul Trivedi, Vasumathi Sundaram
• Sponsor: National Science Foundation (NSF):

CNS-0305641

Context: Environment

• RIDGE project - ridge.cs.umn.edu
– reliable infrastructure for donation grid envs

• Live deployment on PlanetLab – planet-lab.org
– 700 nodes spanning 335 sites and 35 countries
– emulators and simulators

• Applications
– BLAST
– Traffic planning
– Image comparison

Dynamic Resources/Behavior

• Open Distributed System
– Condor, BOINC
– Nodes join voluntarily and behave unpredictably

• Exploit these nodes to perform computations
– Individual jobs
– Host compute- and data-oriented services (BLAST)

Challenge

• Nodes are unreliable – crash, hacked, churn, malicious,
misconfigured, slow, etc.
– > 1% of SETI nodes “cheated” to improve turnaround time

• How can we insure (1) correct and (2) timely results?

• Result verification techniques
– application-specific verifiers – not general – and don’t improve

timeliness

• General solution: redundancy + voting

Replication Challenges

• How many replicas?
– too many – waste of resources
– too few – application suffers

• Most approaches assume ad-hoc replication
– under-replicate: task re-execution (̂ latency)
– over-replicate: wasted resources (v throughput)

• Using information about the past behavior of a node, we can
intelligently size the amount of redundancy

System Model

Problems with ad-hoc replication

Unreliable node

Reliable nodeTask x
sent to
group A

Task y
sent to
group B

Note: fixed size groups (size 5)

System Model

0.9

0.4

0.8

0.8

0.7

0.8

0.8

0.7

0.4

0.3

• Reputation rating ri– degree of node
reliability

• Dynamically size the redundancy based
on ri

• Note: variable sized groups

How to compute ri ?

correct => but what is correct?
total tasks

optimistic: in the majority, ++, others --
pessimistic: no majority, -- to all
neutral: no majority, do nothing
verification: always right

Question

• What assumption is optimistic making?

Question

• What assumption is optimistic making?
– majority is always right, hence no collusion

• This may be dangerous – can you think of
examples?

Question

• What assumption is optimistic making?
– majority is always right, hence no collusion

• This may be dangerous – can you think of
examples?
– Same virus attacks machines
– A bad patch or code given to a set of machines

Smart Replication

• Reputation
– ratings based on past interactions with clients

– simple sample-based prob. (ri) over window τ
– extend to worker group (assuming no collusion) => likelihood of

correctness (LOC)

• Smarter Redundancy
– variable-sized worker groups
– intuition: higher reliability clients => smaller groups

Terms

• LOC (Likelihood of Correctness), λg

– computes the ‘actual’ probability of getting a correct answer from
a group of clients (group g)

• Target LOC (λtarget)
– the success-rate that the system tries to ensure while forming

client groups
– related to the mean of the reliability distribution

LOC Functions

• Function for LOC

• Function for lower bound of LOC

∑ ∑ ∏
+

+=

=

+

=

−

∑

−=
+

=
+

12

1
:,

12

1

1

12

1
121

)1(
k

km
m

k

i
ii

k

i
ik

ii rr

εεε

εε

∑ ∏
+

+=

+

=

−−

 +
≥

12

1

12

1

1)1(
12k

km

k

i
ii

mm rr
m

k αα

 +

−

=

m

k

m

k

m 12

1

2

α

Performance Metrics

• Guiding metrics
– throughput ρ: # of successfully completed tasks in an

interval

– success rate s: ratio of throughput to number of tasks
attempted

Algorithm Space

• How many replicas?
– algorithms compute how many replicas to meet a

success threshold
– first-, best-fit, random, fixed, …

• How to reach consensus?
– M-first (better for timeliness)
– Majority (better for byzantine threats)

Scheduling Algorithms

• First-Fit
– attempt to form the first group that satisfies the target LOC while

considering the relative client ratings

• Best-Fit
– attempt to form a group that best satisfies the target LOC while

considering the relative client ratings

• Random-Fit
– attempt to form a random group that satisfies the target LOC

• Fixed-size
– randomly form fixed sized groups; ignore client ratings

Scheduling Algorithms

• Different size groups may result

• Order nodes by ri

Scheduling Algorithms (cont’d)

Different Groupings

λtarget = .5

Evaluation

• Baselines
– Fixed algorithm: statically sized equal groups uses no reliability

information
– Random algorithm: forms groups by randomly assigning nodes

until λtarget is reached

• Simulated a wide-variety of node reliability distributions

Experimental Results: correctness

This was a simulation based on byzantine behavior … majority voting

Overhead
best fit

Non-stationarity
• Nodes may suddenly shift gears

– deliberately malicious, virus, detach/rejoin
– underlying reliability distribution changes

• Solution
– window-based rating (reduce τ = 20 from infinite)

– adapt/learn λtarget

• Experiment: “blackout” at round 300 (30% effected)

Role of λtarget

• Key parameter
• Too large

– groups will be too large (low throughput)
• Too small

– groups will be too small (low success rate)
• Adaptively learn it by maximizing ρ * s

– “goodput”
– or could bias toward ρ or s

Adaptive algorithm

• Multi-objective optimization
– choose target LOC to simultaneously maximize

throughput ρ and success rate s
– use weighted combination to reduce multiple objectives to

a single objective
– employ hill-climbing and feedback techniques to control

dynamic parameter adjustment

Adaptive Algorithm
success ratethroughput

success ratethroughput

Adapting λtarget

• Blackout example

Going Parameterless: Throughput

B
F

-U
ni

fo
rm

B
F

-N
or

m
Lo

w

B
F

-N
or

m
H

ig
h

B
F

-H
ea

vy
Lo

w

B
F

-H
ea

vy
H

ig
h

B
F

-B
im

od
al

M in
Adapt

Max0

5

10

15

20

25

30

Xput comparison - BF

Min

Adapt

Max

Success-rate

B
F

-U
ni

fo
rm

B
F

-N
or

m
Lo

w

B
F

-N
or

m
H

ig
h

B
F

-H
ea

vy
Lo

w

B
F

-H
ea

vy
H

ig
h

B
F

-B
im

od
al

M in

Max0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

SR Comparison - BF

Min

Adapt

Max

 convergence rate: 150-350 rounds

Timeliness

• What is timeliness?
• Two viewpoints

– (1) soft deadlines
• user interaction, visualizing output from computation

– (2) hard deadlines
• need to get X results done before HPDC/NSDI/… deadline

• Start with (1)
• Live experimentation on PlanetLab

Some PL data

Computation Heterogeneity

 - both across and within nodes

Communication Heterogeneity

 - both across and within nodes

PlanetLab – lower bound

RIDGE

• RIDGE scheduling framework on top of BOINC
• PL Grid –120 dispersed worker nodes
• Test application – BLAST, a Bioinformatics application for

genomic sequence comparison
• M-First (M=1) consensus
• Assume fully correct

RIDGE Scheduler

PL Timeliness Trace + Soft deadlines

reliability = # tasks completed by deadline/total tasks

Learning Rate

 Performance of BOINC: Timeliness

best replication factor varies

Experimental Results: timeliness

M-first (M=1), best BOINC (BOINC*), conservative (BOINC-) vs. RIDGE

 Makespan: RIDGE vs. BOINC
(task level)

Makespan Comparison
(application level)

Future Work

• Mechanisms to retain node identities (hence ri) under node
churn

– “node signatures” that capture the characteristics of the node

• Combine timeliness + correctness
• Client collusion

– Detection: group signatures
– Prevention:

• Uses quizzes (ground-truth); server should run tasks occasionally
• random group formation

Computational Makespan

compute dominates:
BLAST

Reducing makespan requires not only smart redundancy and
scheduling, but smart decomposition

Reducing Makespan

variable-sizedequal-sized
*

Hard Deadlines

• Sometimes deadlines are hard
• The task which simulates a key parameter that finished

after HPDC deadline may not be useful
• Many other real-time scenarios
• Challenge is again the time variability of open

distributed systems

Timeliness Definition

Timeliness:

Group timeliness:

Redundancy

• Two workers W1 and W2 with timeliness of .8 and .
6 respectively for D=100
– Objective is .9 reliability for a task (TSR)
– Can’t do it alone

• Assign both to the task => .92

EDF (earliest) vs. LDF (latest)

• Tasks T1, T2, T3 with successively higher deadlines
• Three workers W1, W2, W3
• T1 has D1 and needs all three workers
• T2 and T3 have D2 (D2 > D1), any single worker will do)

• EDF: pick T1; T2 and T3 cannot run, tput = 1
• LDF: picks T2 and T3, tput = 2
• Coupling redundancy and deadlines is tricky

EDF vs. LDF
• LDF has good tput, but is it fair?
• T1, T2 have D1 and T3, T4 have D2 (= 2 * D1)
• Need both workers to meet D1 but either for D2

• Both have a tput of 2 but LDF is unfair to short D

The Metrics

 tput = ~ of tasks completed by their deadline

fairness: ~ of tasks completed in bin i
of tasks in bin i

Generalization

• LRED
– Limited Resource Scheduling Earliest Deadline

• Balance
– Tasks requiring more nodes (shorter deadlines) reduce tput
– Favoring tasks with shorter deadlines improves fairness

(doesn’t starve longer deadline tasks since their deadlines
get smaller with time!)

Intuitive Behavior

• Pick task groups with smaller resource
requirements (to a point), larger D => tput

• Within each group of tasks, sort by earliest deadline
=> fairness

The Idea

sort each bin by ascending deadline
can’t be satisfied by W

max = # of workers required by any task

sort by timeliness – use the mean

Algorithm Start Points

LRED(1) = ~LDF
LRED(inf) = EDF

LRED Algorithm

PL Trace

Results

TSR = .9, lowTE [80-150], modTE [120-200], highTE [200-350]

Result Summary
• Smaller n for LRED provides better throughput
• Larger n for LRED produces higher fairness
• Can be tuned
• The throughput-fairness tradeoff

– is more visible than at high loads
– becomes more significant as the overall timeliness level

of the environment decreases

Questions?

Dynamic Communication

• Dynamically selecting data servers
• Dynamically estimating bandwidth
• Dynamic workflow optimization

• All in the context of Grid applications

Dynamically selecting data servers

• Nodes download data from replicated data nodes
– Nodes choose “data servers” independently (decentralized)
– Minimize the maximum download time for all worker nodes

(communication makespan)

data download dominates:
 image filtering, convolution,
 early discard, …

all results needed –
 best, average, …

Motivation
• Many distributed network applications require

massive data

– HEP, image analysis, …
– Such datasets are often replicated to data servers

• Challenges in data delivery

– Proximity of clients to data servers
– Unreliability and heterogeneity of data servers
– Load balancing

Data node selection
• Several possible factors

– Proximity (RTT)
– Network bandwidth
– Server capacity

[Download Time vs. RTT - linear]

[Download Time vs. Bandwidth - exp]

Mean Download Time / RTT

0

100

200

300

400

500

600

700

800

900

1000

1 3 5 7 10

Concurrency

T
im

e
(m

se
c)

flux

tamu

venus

ksu

ubc

wroc

Server Selection Strategy

• Based on observations
– Servers with low bandwidth (e.g. < 1Mbps) are to be avoided

• even if RTT is small

– Servers with high bandwidth (e.g. > 10Mbps) are to be favored
• use RTT as a discriminator

– Servers with medium bandwidth (e.g. 1-10Mbps) are best
discriminated by system load

Heuristic Ranking Function

• Query to get candidates, do RTT/bw probes
• Node i, data server node j

– Cost function = rtti,j * exp(kj /bwi,j), kj load/capacity

• Least cost data node selected independently
• Three server selection heuristics that use kj

– BW-ONLY: kj = 1

– BW-LOAD: kj = n-minute average load (past)

– BW-CAND: kj = # of candidate responses in last m seconds
(~ future load)

Performance Comparison

Impact of Loading

higher variance

Comparison of Individual Experiments

Different server configs

Take away

• Bandwidth, proximity, load, and capacity all matter!

• Both heterogeneity and load balancing must be taken
into account

• But reliance on RTT and BW measurements

Dynamically Estimating Bandwidth

• Bandwidth, RTT estimation can be applied to:
– prior situation (many workers, many data servers)

• Compute-oriented applications(e.g BLAST)
– similar to prior situation (many workers, many data servers)

although communication is less of a b-neck

• Worker selection for data-intensive tasks
– where to place workers?

Dynamically Estimating Bandwidth

• Data-intensive computation needs access to one or
more data sources – data may be very large
– bw probes to too expensive

The Problem

• Where to run a data-intensive computation (or place a
worker)?
– from a set of candidates

• Unlikely a candidate knows downstream bw from
particular data nodes

• Idea: infer bw from prior observations or from
neighbor observations w/r to data nodes!

• Simplify presentation: single worker, no replication,
single data object

Some Observations

 RTT and Download Speed Past Download Speed to Download Speed

Estimation Technique

• C1 may have had little past interaction with
– … but its neighbors may have

• For each neighbor generate a download estimate:
– DT: prior download time to from neighbor
– RTT: from candidate and neighbor to respectively
– DP: average weighted measure of prior download times for any

node to any data source

C1

C2

Estimation Technique (cont’d)
• Download Power (DP) characterizes download capability of a node

– DP = average (DT * RTT)
– DT not enough (far-away vs. nearby data source)

• Estimation associated with each neighbor ni

– ElapsedEst [ni] = α ∙ β ∙ DT
• α : my_RTT/neighbor_RTT (to)
• β : neighbor_DP /my_DP
• no active probes: historical data, RTT inference

• Combining neighbor estimates
– mean, median, min, ….
– median worked the best

• Take a min over all candidate estimates

NEIGHBOR

SELF

must be an active probe

this is an issue with 1000s
of candidates …

RTT Inference
We can do inference if our neighbors have an RTT to the server!
Triangle inequality:

latency (a, c) lies between

Idea: remove observations
that violate the triangle
inequality

ours

RTT Inference Result
• More neighbors, greater accuracy
• With 5 neighbors, 85% of the estimations < 16% error

-150 -100 -50 0 50 100 150 200
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Latency Difference (= |Inferred-Measured|)

F
(x

)

Inferred Latency Difference CDF

N=2

N=3

N=5

N=10

Results

8 neighbors

Neighbor size

Data size

Churn

Take Away

• Locality between a data source and a node
– scalable, no (or minimal) probing needed
– allows for ranking based on bw estimates, provides RTT

• Wide application
– useful in many scenarios based on ranking choices

Data flow optimization

• Workflow architectures

centralized data and control distributed data and central control

Choreography

 distributed data and distributed control

Comparisons

• Pure Choreography
– More collaborative
– WS-CDL exists but no implementations
– Best possible performance
– Requires users modify their services

• Pure Orchestration
– Control and data-flow managed by a central engine
– Worst possible performance
– No service modification required

Middle-Ground Solution

proxy is a WS; located
near the service

Proxy API

Example

Back to our earlier example

Example (cont’d)

Example (cont’d)

Example (cont’d)

Issues

• Nice research questions
– Proxy selection
– Proxy assignment
– Proximity
– Load balance

• Currently exploring these on PlanetLab

Questions?

Dynamic Metrics

• How to characterize and measure the behavior of
dynamic (Grid) systems?

• Current metrics are absolute and therefore
inadequate

• Dynamism suggests we need “first derivative”
metrics

Metrics Today

• Typical performance metrics
– exploit and address the common case
– if application X is given Y resources, then Perf(X, Y) can be

expected
– F= min/max { avg [Perf

(X, Y)] }

• Average performance has always been the metric to
measure success
– completion time (minimize)
– throughput (maximize)

Traditional Metrics

throughput

user is interested in speed only for each request

solver

user is interested in throughput

solver

user is interested in reliability

speed

solver

reliability

Another metric
• Other metrics may be useful for dynamic (Grid) systems

– Average or common case may be less important

• Account for dynamic characteristics
– resource availability is stochastic
– demand is stochastic
– execution time is stochastic

• Robustness
– performance robustness may be as (or more) important than “high

performance”

Scheduling for Robustness
“Robustness is the persistence of certain specified system

features despite perturbations being applied to the system”
• Performance robustness for applications

– small perturbations result in large fluctuations in behavior
– perturbations are inherently unpredictable
– “compressed” variance, yet good performance

• Perturbations
– arrival patterns (demand)
– resource availability
– execution times (data-dependent)

Application execution time

• Application execution times are stochastic
• “Heavy-tailed” scientific computing application server

– irregular search that results from optimization problems
• branch-and-bound

– highly data- and control-dependent execution times
• solve my NxN system using Jacobi … or CG …

– occasional large request can dominate the workload => this is the
perturbation

– large variance

Stochastic execution times

Scheduling for Robustness
• Example 1

– application contains two types of tasks
– one normally distributed (N), the other heavy-tailed (H)
– two machines can run either type of task
– application instance has three tasks
– one of type N (T1) and two of type to H (T2 and T3)

• Scheduling
– policy 1: balance based on expected values
– policy 2: balance based on 99th percentile

policy 1 =>

policy 2 =>

Scheduling for Robustness (cont’d)

38.5

21.5

range

• Robustness as a function of makespan

M2

M1

•Robustness as a function of completion time

Demand Example
• Example 2

– independent requests to a service
– heavy-tailed
– three machines

• Scheduling
– policy 1: shortest queue
– policy 2: send to machine with most recently started execution (avoid

when same req. running for a while)
• exploits heavy-tailed property that running time is a good indicator of future

remaining running time

• Robustness as a function of waiting time

Demand Example (cont’d)

– very simple policy produced dramatically better results

Measurement

• Great – this makes intuitive sense, but how do you
measure it?

Robustness Metric

under a disturbance

• Metric gives us a tool to analyze behavior
• Also useful for exploring system alternatives

– scheduling algorithms
– resource provisioning
– etc

max

Metric (cont’d)

Robust to Heavy-Tailed Property

Backfiling

• Requires user estimates of parallel job run-time and
of desired processors

• Batch mode scheduling

Backfiling (cont’d)
Disturbance: user under- or over-estimation in waiting time (user behavior)
SDSC supercomputer job trace

Robustness as a function of waiting time

Video Server

Disturbance: demand for videos; performance metric is response time

Video Server (cont’d)

Robustness as a function of response time

Cool Example: Sensor Nets

Goal is to route/aggregate all information to (1)
Links are weighted in terms of cost

Could also refer to any distributed application requiring data
collection

Disturbance: node failure and data loss

Sensor Net (cont’d)

Different spanning tree routing options our robust approach

Results

ours

FH is also, but is
poor for battery power

Robustness as a function of data survival

Questions?

Dynamic Architectures

• Our distributed system architecture must be
dynamic to cope with all the other forms of
dynamism …

• Decentralization is the key

Background
• Grids are distributed … but also centralized

– Condor, Globus, BOINC, Grid Services, VOs
– Why? client-server based

• Centralization pros
– Security, policy, global resource management

• Decentralization pros
– Reliability, dynamic, flexible, scalable

Challenges

• May have to live within the Grid ecosystem
– Condor, Globus, Grid services, VOs, etc.
– First principle approaches are risky (Legion)

• 50K foot view
– How to decentralize Grids yet retain their existing

features?
– High performance, workflows, performance prediction,

etc.

Decentralized Grid platform

• Minimal assumptions about each “node”
• Nodes have associated “assets” (A)

– basic: CPU, memory, disk, etc.
– complex: application services
– exposed interface to assets: OS, Condor, BOINC, Web service

• Nodes may up or down
• Node trust is not a given (do X, does Y instead)
• Nodes may connect to other nodes or not
• Nodes may be aggregates
• Grid may be large > 100K nodes, scalability is key

Grid Overlay

Grid service

Raw – OS services

Condor network

BOINC network

Grid Overlay - Join

Grid service

Raw – OS services

Condor network

BOINC network

Grid Overlay - Departure

Grid service

Raw – OS services

Condor network

BOINC network

Routing = Discovery

Query contains sufficient information to locate a node: RSL, ClassAd,
etc
Exact match or semantic match

discover A

Routing = Discovery

bingo!

Routing = Discovery

Discovered node returns a handle sufficient for the “client” to interact
with it

- perform service invocation, job/data transmission, etc

Routing = Discovery

• Three parties
– initiator of discovery events for A
– client: invocation, health of A
– node offering A

• Often initiator and client will be the same

• Other times client will be determined dynamically
– if W is a web service and results are returned to a calling client, want

to locate CW near W =>

– discover W, then CW !

Routing = Discovery

discover A

X

Routing = Discovery

Routing = Discovery

bingo!

Routing = Discovery

Routing = Discovery

outside
client

Routing = Discovery

discover A’s

Routing = Discovery

Grid Overlay
• This generalizes …

– Resource query (query contains job requirements)
– Looks like decentralized “matchmaking”

• These are the easy cases …
– independent simple queries

• find a CPU with characteristics x, y, z
• find 100 CPUs each with x, y, z

– suppose queries are complex or related?
• find N CPUs with aggregate power = G Gflops
• locate an asset near a prior discovered asset

Grid Scenarios
• Grid applications are more challenging

– Application has a more complex structure – multi-task,
parallel/distributed, control/data dependencies
• individual job/task needs a resource near a data source
• workflow
• queries are not independent

– Metrics are collective
• not simply raw throughput
• makespan
• response
• QoS

Related Work

• Maryland/Purdue
– matchmaking

• Oregon-CCOF
– time-zone

CAN

Related Work (cont’d)

None of these approaches address the Grid scenarios
(in a decentralized manner)
– Complex multi-task data/control dependencies
– Collective metrics

50K Ft Research Issues

• Overlay Architecture
– structured, unstructured, hybrid
– what is the right architecture?

• Decentralized control/data dependencies
– how to do it?

• Reliability
– how to achieve it?

Context: Application Model

answer

= component
 service request
 job
 task
 …

= data source

Context: Application Models

Reliability
Control dependence
Collective metrics

Application Models

Reliability
Control dependence
Collective metrics

Reliability Example
C

 D

EG

B

B

G

Reliability Example
C

 D

EG

B

B

CGG CG (client of G) knows how to initiate G
CG also responsible for G’s health

Reliability Example
C

 D

EG

B

B

G, loc(CG)

CG

Reliability Example
C

 D

EG

B

BG

CG

Reliability Example
C

 D

EG

B

B

CG

X

Reliability Example
C

 D

EG

B

CG

G. …

Reliability Example
C

 D

EG

B

CG

G

Component Replication
C

 D

EG

B

B

G

Component Replication
C

 D

EG

B

CG

G1 G2

Replication Research

• How many replicas?
– too many – waste of resources
– too few – application suffers

• Leverage prior work!

Client Replication
C

 D

EG

B

B

G

Client Replication
C

 D

EG

B

BG

CG1

CG2

loc (G), loc (CG1), loc (CG2) propagated

Client Replication
C

 D

EG

B

BG

CG1

CG2

X client “hand-off” depends on nature of G and interaction

Application Models

Reliability
Control dependence
Collective metrics

The Problem

• How to enable decentralized control?
– propagate downstream graph stages
– perform distributed synchronization

• Idea:
– distributed dataflow – token matching
– graph forwarding, futures (Mentat project)

Control Example
C

 D

EG

B

B control node
token matching

Simple Example

C

 D

EG

B

Control Example

C

 D

EG

B

{E, B*C*D}

{E, B*C*D}

{E, B*C*D}

{C, G}

{D, G}

Control Example
C

 D

EG

C
D

B

{E, B*C*D}

{E, B*C*D}

B

{E, B*C*D}

Control Example
C

 D

EG

C
D

B

{E, B*C*D,
 loc(SC) } {E, B*C*D,

 loc(SD) }

{E, B*C*D,
 loc(SB) }

B

output stored at loc(…) – where component is run, or client, or a storage
node

Control Example
C

 D

EG

C
D

B

B B

Control Example
C

 D

EG

C
D

B

B B

Control Example
C

 D

EG

C
D

B

B B

Control Example
C

 D

EG

C
D

B

B
E

B

Control Example
C

 D

EG

C
D

B

B

E

B

Control Example
C

 D

EG

C
D

B

B

E

B

How to color and
route tokens so that
they arrive to the
same control node?

Application Models

Reliability
Control dependence
Collective metrics

A

B

C

D

Collective Metrics

BLAST

• Throughput not always the best metric
• Response, completion time, application-centric

– makespan - response

Open Problems

• Support for Global Operations
– troubleshooting – what happened?
– monitoring – application progress?
– cleanup – application died, cleanup state

• Load balance across different applications
– routing to guarantee dispersion

Summary

• Taming the dynamism of open distributed systems is a
challenging endeavor
– Grids “push the envelope” in this respect

• Grids can offer richer use cases to drive this research agenda
– data X computation X distribution X heterogeneity

• Grids can learn a great deal from other communities
– P2P, network systems

 Questions

EXTRAS

EXTRAS - OG

EXTRAS

EXTRA - COMM

Combining Neighbors’ Estimation

• MEDIAN shows best results – using 3 neighbors 88% of the time error is within 50%
(variation in download times is a factor of 10-20)

0 5 10 15 20 25 30
0.83

0.84

0.85

0.86

0.87

0.88

0.89

0.9

0.91

Neighbor Size

A
cc

ep
te

d
R

at
e

Acceptance 50%

RANDOM
CLOSEST

MEAN

MEDIAN

RANK

WMEAN
TRMEAN

RTT Inference

• >= 90-95% of Internet paths obey triangle inequality
– RTT (a, c) <= RTT (a, b) + RTT (b, c)

– RTT (server, c) <= RTT (server, ni) + RTT (ni, c)

– upper- bound

– lower-bound: | RTT (server, ni) - RTT (ni, c) |

• iterate over all neighbors to get max L, min U
• return mid-point

Other Constraints

C

 D

EA

B

{E, B*C*D}

{E, B*C*D}

{E, B*C*D}

{C, A, dep-CD}

{D, A, dep-CD}

C & D interact and they should be co-allocated, nearby …
Tokens in bold should route to same control point so a collective query
for C & D can be issued

Other Constraints

C

 D

EA

B

{E, B*C*D}

{E, B*C*D}

{E, B*C*D}

{C, A}

{D, A}

C & D interact and they should be co-allocated, nearby …

Token loss
• Between B and matcher; matcher and next stage

– matcher must notify CB when token arrives (pass loc(CB) with
B’s token

– destination (E) must notify CB when token arrives (pass
loc(CB) with B’s token

C
D

B
E

B

Throughput Comparison

No loss in throughput

