The Dynamic Grid

Jon Weissman University of Minnesota Department of Computer Science National E-Science Center

About Me

- Associate Professor of CS
- Strong sense of loyalty
 - working in Grid-like systems since 1995
- Original member of Legion group
 - great ideas, too radical, revolutionary
- Our philosophy
 - live within the ecosystem

- A) Thilo asked for an abstract/title QUICKLY?
- B) Sounds like a cool term why not?
- C) Upon reflection, our research seems to be captured by this concept?
- D) All of the above

Answer:

- A) Thilo asked for an abstract/title QUICKLY?
- B) Sounds like a cool term why not?
- C) Upon reflection, our research seems to be captured by this concept?
- D) All of the above

Answer: A

- A) Thilo asked for an abstract/title QUICKLY?
- B) Sounds like a cool term why not?
- C) Upon reflection, our research seems to be captured by this concept?
- D) All of the above

Answer: C (just kidding)

- A) Thilo asked for an abstract/title QUICKLY?
- B) Sounds like a cool term why not?
- C) Upon reflection, our research seems to be captured by this concept?
- D) All of the above

Answer: D

A Definition

- Dynamic: "relating or tending toward change"
- This describes the run-time behavior of distributed systems!
- Dimensions of dynamism in distributed systems
 - resources
 - demand
 - behavior

Dynamism

- Resource dynamism
 - more than one computer is involved, so I probably don't own them all
 - likely that I don't own the connecting network
- Demand dynamism
 - distributed systems promote sharing (think: client-server)
 - demand isn't always known a-priori

Dynamism (cont'd)

- Behavior Dynamism
 - people involved: resource providers, job submitters, endclients, sys admins, network admins
 - their actions may change with time
- All of this makes distributed systems research fun yet HARD

Grid Dynamism

• The Grid 'lives" at the upper-end of the dynamism spectrum

- resources X demand X behavior

- Dynamism is a good thing
 - flexible systems emerge
 - assume the worst
 - Larry Peterson, PI of PlanetLab "Inferior railroad tracks lead to superior locomotives"
- However, it must be managed

Master Class Thoughts

• We'll have a chat about 'the Dynamic Grid"

• Mixture of prior research and open problems

• <u>Goals</u>: expose you to some of the important issues and opportunities

Questions?

Master Class Roadmap

- Four modules
- Dynamic Resources + Behavior
- Dynamic Communication
- Dynamic Metrics
- Dynamic Architectures

Collaborators

- Abhishek Chandra, UMn
- Adam Barker, NeSC
- Students: Jinoh Kim, Darin England, Krishnaveni Budati, Rahul Trivedi, Vasumathi Sundaram
- Sponsor: National Science Foundation (NSF): CNS-0305641

Context: Environment

- RIDGE project ridge.cs.um.edu
 - reliable infrastructure for donation grid envs
- Live deployment on PlanetLab planet-lab.org
 - 700 nodes spanning 335 sites and 35 countries
 - emulators and simulators
- Applications
 - BLAST
 - Traffic planning
 - Image comparison

Dynamic Resources /Behavior

- Open Distributed System
 - Condor, BOINC
 - Nodes join voluntarily and behave unpredictably
- Exploit these nodes to perform computations
 - Individual jobs
 - Host compute- and data-oriented services (BLAST)

Challenge

• Nodes are unreliable - crash, hacked, chum, malicious, misconfigured, slow, etc.

- > 1% of SETI nodes 'cheated' to improve turnaround time

- How can we insure (1) correct and (2) timely results?
- Result verification techniques
 - application-specific verifiers not general and don't improve timeliness
- General solution: redundancy + voting

Replication Challenges

- How many replicas?
 - too many waste of resources
 - too few application suffers
- Most approaches assume ad-hoc replication
 - under-replicate: task re-execution (^ latency)
 - over-replicate: wasted resources (v throughput)
- Using information about the past behavior of a node, we can intelligently size the amount of redundancy

System Model

Problems with ad-hoc replication

Note: fixed size groups (size 5)

System Model

- Reputation rating r_i- degree of node reliability
- Dynamically size the redundancy based on r_i
- Note: variable sized groups

How to compute r_i ?

 $r_i(t) = \frac{n_i(t) + 1}{N_i(t) + 2}$ # correct => but what is correct?

Question

• What assumption is optimistic making?

Question

- What assumption is optimistic making?
 majority is always right, hence no collusion
- This may be dangerous can you think of examples?

Question

- What assumption is optimistic making?
 majority is always right, hence no collusion
- This may be dangerous can you think of examples?
 - Same virus attacks machines
 - A bad patch or code given to a set of machines

Smart Replication

- Reputation
 - ratings based on past interactions with clients
 - simple sample-based prob. (r_i) over window τ
 - extend to worker group (assuming no collusion) => likelihood of correctness (LOC)
- Smarter Redundancy
 - variable-sized worker groups
 - intuition: higher reliability clients => smaller groups

Terms

- LOC (Likelihood of Correctness), λ_g
 - computes the 'actual' probability of getting a correct answer from a group of clients (group g)
- Target LOC (λ_{target})
 - the success-rate that the system tries to ensure while forming client groups
 - related to the mean of the reliability distribution

LOC Functions

- Function for LOC $= \sum_{m=k+1}^{2k+1} \sum_{\substack{k=1,\ldots,\varepsilon_{2k+1}: \sum_{i=1}^{2k+1} \varepsilon_i = m}} \prod_{i=1}^{2k+1} r_i^{\varepsilon_i} (1-r_i)^{1-\varepsilon_i}$
- Function for lower bound of LOC

$$\geq \sum_{m=k+1}^{2k+1} \binom{2k+1}{m} \prod_{i=1}^{2k+1} r_i^{\alpha_m} (1-r_i)^{1-\alpha_m} \qquad \alpha_m = \frac{\binom{2k}{m-1}}{\binom{2k+1}{m}}$$

Performance Metrics

- Guiding metrics
 - throughput p # of successfully completed tasks in an interval
 - success rate s: ratio of throughput to number of tasks attempted

Algorithm S pace

- How many replicas?
 - algorithms compute how many replicas to meet a success threshold
 - first-, best-fit, random, fixed, ...
- How to reach consensus?
 - M-first (better for timeliness)
 - Majority (better for byzantine threats)

Scheduling Algorithms

- First-Fit
 - attempt to form the first group that satisfies the target LOC while considering the relative client ratings
- Best-Fit
 - attempt to form a group that best satisfies the target LOC while considering the relative client ratings
- Random-Fit
 - attempt to form a random group that satisfies the target LOC
- Fixed-size
 - randomly form fixed sized groups; ignore client ratings

Scheduling Algorithms

- Different size groups may result
- Order nodes by r.

Algorithm 2 First-Fit (w worker-list, τ task-list, λ_{target} target LOC, R_{min} min-groupsize, R_{max} max-group-size)

- 1: Sort the list w of all available workers on the basis of the reliability ratings r_i
- 2: while $|w| \ge R_{min}$ do
- 3: Select task τ_i from τ
- 4: repeat
- 5: Assign the *most reliable* worker w_r from c to G_i
- 6: $w \leftarrow w$ w_r
- 7: Update λ_i
- s: **until** $(\lambda_i \ge \lambda_{target} \text{ AND } |G_i| \ge R_{min}) \text{ OR } |G_i| = R_{max}$
- 9: end while

Scheduling Algorithms (cont'd)

Algorithm 3 Best-Fit (w worker-list, τ task-list, λ_{target} target LOC, R_{min} min-groupsize)

- 1: Sort the list w of all available workers on the basis of the reliability ratings r_i
- 2: while $|w| \ge R_{min}$ do
- 3: Select task τ_i from τ
- 4: Search for a set s of n workers w_n from w such that λ_s exceeds λ_{target} minimally
- 5: **if** such a set s is found **then**
- 6: Assign the w_n workers to G_i
- 7: else
- s: Select the set of *n* workers *s* for which $\lambda_{target} \lambda_s$ is minimized
- 9: Assign the w_n workers to G_i
- 10: end if
- 11: $w \leftarrow w w_n$
- 12: end while

Different Groupings

 λ_{target} = .5

Worker nodes with reliability ratings

First-fit

Best-fit

Evaluation

- Baselines
 - Fixed algorithm: statically sized equal groups uses no reliability information
 - Random algorithm: forms groups by randomly assigning nodes until $\lambda_{\!_{target}}$ is reached
- Simulated a wide-variety of node reliability distributions

Experimental Results: correctness

This was a simulation based on byzantine behavior ... majority voting

(a)Network size=100

(b)Network size=1000

Non-stationarity

- Nodes may suddenly shift gears
 - deliberately malicious, virus, detach/rejoin
 - underlying reliability distribution changes
- Solution
 - window-based rating (reduce 12 from infinite)
 - adapt/leam λ_{target}
- Experiment: 'blackout' at round 300 (30% effected)

- Key parameter
- Too large
 - groups will be too large (low throughput)
- Too small
 - groups will be too small (low success rate)
- Adaptively learn it by maximizing $\rho^* s$
 - 'goodput'
 - or could bias toward por s

Adaptive algorithm

- Multi-objective optimization
 - choose target LOC to simultaneously maximize throughput ρ and success rate s
 - use weighted combination to reduce multiple objectives to a single objective
 - employ hill-climbing and feedback techniques to control dynamic parameter adjustment

Adaptive Algorithm

Fig. 9. Comparison of throughput/success rate achieved using adaptive algorithm with varying α

Algorithm 1 UpdateTargetLOC (λ_{target} target LOC, α throughput-weight)

1: Local variables: 5 state, d currenting 2: fif (round % p) = 1 p-1 then 4: Update measures of mean normalized throughput xp and success rate sr 5: else 6: fif s = CONVERGING then 7: fif round = p then 8: Set initial direction d based on mean client reliability 9: j - 4 10: end if 11: $G_{logist} \leftarrow G$ 12: Gain $G \leftarrow \alpha * xp + (1-\alpha) * sr$ 13: fif $G G_{logist} \ge delta_{ang}$ then 14: j - 0 then 15: Switch direction d 16: fif j = 0 then 17: s - STEADY-STATE 18: end if 19: else ff $G > G_{avg}$ OR $G G_{logist} \le delta_{in}$ then 10: if $d = \operatorname{left}$ then 10: $\lambda_{larget} \leftarrow \lambda_{larget} + 0.01vj$ 12: else 13: $\lambda_{larget} \leftarrow \lambda_{larget} + 0.01vj$ 14: end if 15: else 16: $\lambda_{larget} \leftarrow \lambda_{larget} + 0.01vj$ 17: if $\Lambda_{larget} \leftarrow \lambda_{larget} + 0.01vj$ 18: end if 19: end if 10: end if 10: end if 10: end if 11: $\delta_{larget} \leftarrow \lambda_{larget} + 0.01vj$ 12: else 12: $Gain G \leftarrow \alpha * xp + (1-\alpha) * sr$ 13: if $G G_{lagist} \ge delta_{aig}$ then 14: $s \leftarrow CONVERGING, j \leftarrow 4$ 15: end if 16: $G_{avg} \leftarrow weight_{ourr} * G + weight_{hist} * G_{avg}$ 17: end if 16: end if 16: end if 17: end if	1 Level angiller a state d direction		
3: If (round % p) = 1p-1 then 4: Update measures of mean normalized throughput xp and success rate sr 5: else 6: If s = CONVERGING then 7: If round = p then 8: Set initial direction d based on mean client reliability 9: $j - 4$ 10: end If 11: $G_{inst} - G$ 12: $G_{ian} G - \alpha * xp + (1-\alpha) * sr$ 13: $if G / G_{iast} \ge delta_{mod}$ then 14: $j - j - 1$ 15: Switch direction d 16: $if j = 0$ then 17: $s - STEADY-STATE$ 18: end if 19: else if $G > G_{ang} \cap R \ / \ / \ / \ / \ / \ / \ / \ / \ / \$	1: Local variables: s state, d direction		
4. Update measures of mean normalized throughput xp and success rate sr 5: else 6. if $s = \text{CONVERGING then}$ 7. if round = p then 8. Set initial direction d based on mean client reliability 9. $j \leftarrow 4$ 10. end if 11. $G_{last} \leftarrow G$ 12. $Gain G - \alpha * xp + (1-\alpha) * sr$ 13. if $G / G_{last} \ge delta_{mod}$ then 14. $j - j - 1$ 15. Switch direction d 16. if $j = 0$ then 17. $s \leftarrow \text{STEADY-STATE}$ 18. end if 19. else if $G > G_{avg} \text{ OR } G / G_{last} \le delta_{in}$ then 10. if $d = \text{left then}$ 11. $\lambda_{target} \leftarrow \lambda_{target} + 0.01*j$ 22. else 23. $\lambda_{target} \leftarrow \lambda_{target} + 0.01*j$ 24. end if 25. else 26. $\lambda_{target} \text{ unchanged}$ for maxrounds rounds then 27. if $\lambda_{target} \text{ unchanged}$ for maxrounds rounds then 28. $s \leftarrow \text{STEADY-STATE}$ 29. end if 20. end if 21. else 22. $\Delta_{target} \text{ unchanged}$ for maxrounds rounds then 23. $s \leftarrow \text{STEADY-STATE}$ 24. end if 25. else 26. $\lambda_{target} \text{ unchanged}$ for maxrounds rounds then 27. if $\lambda_{target} \text{ unchanged}$ for maxrounds rounds then 28. $s \leftarrow \text{STEADY-STATE}$ 29. end if 30. end if 31. else 32. Gain $G - \alpha * xp + (1-\alpha) * sr$ 33. if $G / G_{last} \ge delta_{sig}$ then 34. $s \leftarrow \text{ONVERGING}, j \leftarrow 4$ 35. end if 36. $G_{avg} - \text{ weight}_{curr} * G + \text{ weight}_{hist} * G_{avg}$			
5: else 6: if $s = \text{CONVERGING then}$ 7: if round = p then 8: Set initial direction d based on mean client reliability 9: $j \leftarrow 4$ 10: end if 11: $G_{last} - G$ 12: $G_{ain} G - \alpha * xp + (1-\alpha) * sr$ 13: if $G / G_{last} \ge delta_{mod}$ then 14: $j - j - 1$ 15: Switch direction d 16: if $j = 0$ then 17: $s \leftarrow \text{STEADY-STATE}$ 18: end if 19: else if $G > G_{avg} \text{ OR } G / G_{last} \le delta_{in}$ then 20: if $d = \text{left then}$ 21: $\lambda_{target} \leftarrow \lambda_{target} + 0.01*j$ 22: else 23: $\lambda_{target} \leftarrow \lambda_{target} + 0.01*j$ 24: end if 25: else 26: $\lambda_{target} \text{ unchanged}$ for maxrounds rounds then 27: if $\lambda_{target} \text{ unchanged}$ for maxrounds rounds then 28: $s \leftarrow \text{STEADY-STATE}$ 29: end if 20: end if 20: end if 30: end if 31: else 32: $Gain G - \alpha * xp + (1-\alpha) * sr$ 33: if $G / G_{last} \ge delta_{sig}$ then 34: $s \leftarrow \text{CONVERGING}, j \leftarrow 4$ 35: end if 36: $G_{avg} \leftarrow \text{weight}_{curr} * G + \text{weight}_{hist} * G_{avg}$			
6: if $s = \text{CONVERGING then}$ 7: if round = p then 8: Set initial direction d based on mean client reliability 9: $j \leftarrow 4$ 10: end if 11: $G_{last} \leftarrow G$ 12: Gain $G \leftarrow \alpha * xp + (1 - \alpha) * sr$ 13: if $G / G_{last} \geq delta_{mod}$ then 14: $j \leftarrow j - 1$ 15: Switch direction d 16: if $j = 0$ then 17: $s \leftarrow \text{STEADY-STATE}$ 18: end if 19: else if $G > G_{avg}$ OR $G / G_{last} \leq delta_{in}$ then 11: $\lambda_{barget} \leftarrow \lambda_{larget} = 0.01 \neq j$ 12: else 23: $\lambda_{target} \leftarrow \lambda_{larget} + 0.01 \neq j$ 24: end if 25: else 26: λ_{target} unchanged for maxrounds rounds then 27: if λ_{target} unchanged for maxrounds rounds then 28: δ_{target} unchanged for maxrounds rounds then 29: end if 20: end if 20: end if 20: end if 21: else 22: Gain $G \leftarrow \alpha * xp + (1 - \alpha) * sr$ 33: if $G / G_{last} \geq delta_{sig}$ then 34: $s \leftarrow \text{CONVERGENG}, j - 4$ 35: end if 36: $G_{avg} \leftarrow weight_{curr} * G + weight_{hist} * G_{avg}$			
7: if round = p then 8: Set initial direction d based on mean client reliability 9: $j \leftarrow 4$ 10: end if 11: $G_{last} \leftarrow G$ 12: $G_{ain} G - \alpha * xp + (1-\alpha) * sr$ 13: if $G / G_{loat} \ge delta_{mod}$ then 14: $j \leftarrow j-1$ 15: Switch direction d 16: if $j = 0$ then 17: $s - STEADY-STATE$ 18: end if 19: else if $G > G_{avg}$ OR $G / G_{last} \le delta_{in}$ then 10: if $d = left$ then 11: $\lambda_{target} \leftarrow \lambda_{larget} = 0.01*j$ 22: else 23: $\lambda_{target} \leftarrow \lambda_{larget} + 0.01*j$ 24: end if 25: else 26: λ_{target} unchanged for maxrounds rounds then 27: if λ_{target} unchanged for maxrounds rounds then 28: $s \leftarrow STEADY-STATE$ 29: end if 20: end if 20: end if 20: end if 21: $\beta_{target} = delta_{sig}$ then 22: $Gain G \leftarrow \alpha * xp + (1-\alpha) * sr$ 33: if $G / G_{last} \ge delta_{sig}$ then 34: $s \leftarrow CONVERGING, j - 4$ 35: end if 36: $G_{avg} \leftarrow weight_{curr} * G + weight_{hist} * G_{avg}$			
Set initial direction d based on mean client reliability $j \leftarrow 4$ $j \leftarrow 4$ $j \leftarrow 4$ if = d if if = 0 $Gain G \leftarrow \alpha * sp + (1-\alpha) * sr$ if $f = 0$ then if = 0 then if = 0 then if = 0 then if d = left then $s \leftarrow STEADY-STATE$ end if $s \leftarrow STEADY-STATE$ end if $s \leftarrow STEADY-STATE$ end if $s \leftarrow STEADY-STATE$ $s \leftarrow STEADY-STATE$ $s \leftarrow STEADY-STATE$ $s \leftarrow STEADY-STATE$ $s \leftarrow CONVERGING, j \leftarrow 4$ $s \leftarrow CONVERGING, j \leftarrow 4$ $s \leftarrow CONVERGING, j \leftarrow 4$ $s \leftarrow onversetGing, j \leftarrow 4$			
9: $j \leftarrow 4$ 10: end if 11: $G_{last} \leftarrow G$ 12: $Gain G \leftarrow \alpha * xp + (1 \cdot \alpha) * sr$ 13: if $G / G_{last} \ge delta_{and}$ then 14: $j \leftarrow j - 1$ 15: Switch direction d 16: if $j = 0$ then 17: $s \leftarrow STEADY-STATE$ end if 19: else if $G > G_{avg}$ OR $G / G_{last} \le delta_{in}$ then 20: if $d = left$ then 21: $\lambda_{larget} \leftarrow \lambda_{target} + 0.01*j$ 22: else 23: $\lambda_{target} \leftarrow \lambda_{target} + 0.01*j$ 24: end if 25: else 26: λ_{target} unchanged 27: if λ_{target} unchanged 27: if $d = left$ then 28: $s \leftarrow STEADY-STATE$ 29: end if 31: else 32: $Gain G \leftarrow \alpha * xp + (1 \cdot \alpha) * sr$ 33: if $G / G_{last} \ge delta_{sin}$ then 34: $s \leftarrow CONVERGING, j \leftarrow 4$ 35: end if 36: $G_{axg} \leftarrow weight_{carr} * G + weight_{hist} * G_{axg}$	-		
10: end if 11: $G_{last} \leftarrow G$ 12: $G_{ain} \leftarrow \alpha * xp + (1 \cdot \alpha) * sr$ 13: if $G / G_{last} \ge delta_{mod}$ then 14: $j \leftarrow j-1$ 15: Switch direction d 16: if $j = 0$ then 17: $s \leftarrow STEADV-STATE$ 18: end if 19: else if $G > G_{avg} \bigcirc R \ G / G_{last} \le delta_{in}$ then 10: if $d = left$ then 11: $\lambda_{target} \leftarrow \lambda_{target} - 0.01 * j$ 12: else 13: $\lambda_{target} \leftarrow \lambda_{target} + 0.01 * j$ 14: end if 15: else 16: δ_{target} unchanged 17: if $\lambda_{target} \leftarrow \lambda_{target} + 0.01 * j$ 18: $s \leftarrow STEADV-STATE$ 19: else 20: λ_{target} unchanged for maxrounds rounds then 21: $s \leftarrow STEADV-STATE$ 22: else 23: λ_{target} unchanged for maxrounds rounds then 25: $s \leftarrow STEADV-STATE$ 29: end if 20: end if 20: end if 20: end if 20: end if 21: else 22: $Gain \ G \leftarrow \alpha * xp + (1 \cdot \alpha) * sr$ 33: if $G / G_{last} \ge delta_{sig}$ then 34: $s \leftarrow CONVERGING, j \leftarrow 4$ 35: end if 36: $G_{avg} \leftarrow weight_{curr} * \ G + weight_{hist} * \ G_{avg}$	8: Set initial direction <i>d</i> based on mean client reliability		
11: $G_{last} \leftarrow G$ 12: $Gain G \leftarrow \alpha * xp + (1-\alpha) * sr$ 13: if $G / G_{last} \ge delta_{mod}$ then 14: $j - j - 1$ 15: Switch direction d 16: if $j = 0$ then 17: $s \leftarrow STEADY-STATE$ 18: end if 19: else if $G > G_{avg} \cap R G / G_{last} \le delta_{in}$ then 19: $\delta_{target} \leftarrow \lambda_{target} - 0.01*j$ 21: $\delta_{target} \leftarrow \lambda_{target} + 0.01*j$ 22: else 23: $\lambda_{target} \leftarrow \lambda_{target} + 0.01*j$ 24: end if 25: else 26: λ_{target} unchanged for maxrounds rounds then 27: if λ_{target} unchanged for maxrounds rounds then 28: $s \leftarrow STEADY-STATE$ 29: end if 21: $else$ 21: β_{target} unchanged for maxrounds rounds then 23: $s \leftarrow STEADY-STATE$ 29: end if 31: else 32: $Gain G \leftarrow \alpha * xp + (1-\alpha) * sr$ 33: if $G / G_{tars} \ge delta_{sig}$ then 34: $s \leftarrow CONVERGING, j \leftarrow 4$ 35: end if 36: $G_{avg} \leftarrow weight_{curr} * G + weight_{hist} * G_{avg}$			
12: Gain $G \leftarrow \alpha * xp + (1-\alpha) * sr$ 13: if $G / G_{last} \ge delta_{mod}$ then 14: $j \leftarrow j-1$ 15: Switch direction d 16: if $j = 0$ then 17: $s \leftarrow \text{STEADY-STATE}$ 18: end if 19: else if $G > G_{avg} \text{ OR } G / G_{last} \le delta_{in}$ then 20: if $d = \text{left then}$ 21: $\lambda_{target} \leftarrow \lambda_{target} + 0.01*j$ 22: else 23: $\lambda_{target} \leftarrow \lambda_{target} + 0.01*j$ 24: end if 25: else 26: λ_{target} unchanged 27: if λ_{target} unchanged 27: if λ_{target} unchanged for maxrounds rounds then 28: $s \leftarrow \text{STEADY-STATE}$ 30: end if 30: end if 31: else 32: Gain $G \leftarrow \alpha * xp + (1-\alpha) * sr$ 33: if $G / G_{last} \ge delta_{sig}$ then 34: $s \leftarrow \text{CONVERGING}, j \leftarrow 4$ 35: end if 36: $G_{avg} \leftarrow weight_{curr} * G + weight_{hist} * G_{avg}$			
13: if $G / G_{last} \ge delta_{mod}$ then 14: $j - j - 1$ 15: Switch direction d 16: if $j = 0$ then 17: $s - STEADY-STATE$ 18: end if 19: else if $G > G_{avg} \text{ OR } G / G_{last} \le delta_{in}$ then 20: if $d = \text{left then}$ 21: $\lambda_{target} \leftarrow \lambda_{target} - 0.01*j$ 22: else 23: $\lambda_{target} \leftarrow \lambda_{target} + 0.01*j$ 24: end if 25: else 26: λ_{target} unchanged 27: if λ_{target} unchanged 27: if λ_{target} unchanged 27: if λ_{target} unchanged 27: if λ_{target} unchanged 28: $s \leftarrow STEADY-STATE$ 29: end if 30: end if 31: else 32: Gain $G \leftarrow \alpha * xp + (1-\alpha) * sr$ 33: if $G / G_{last} \ge delta_{sig}$ then 34: $s \leftarrow CONVERGING, j \leftarrow 4$ 35: end if 36: $G_{avg} \leftarrow weight_{curr} * G + weight_{hist} * G_{avg}$			
$\begin{array}{llllllllllllllllllllllllllllllllllll$	12: Gain $G \leftarrow \alpha * xp + (1 - \alpha) * sr$	throughput	success rate
15: Switch direction d 16: if $j = 0$ then 17: $s \leftarrow \text{STEADY-STATE}$ 18: end if 19: else if $G > G_{avg}$ OR $G / G_{last} \le delta_{in}$ then 20: if $d = \text{left then}$ 21: $\lambda_{target} \leftarrow \lambda_{target} - 0.01*j$ 22: else 23: $\lambda_{target} \leftarrow \lambda_{target} + 0.01*j$ 24: end if 25: else 26: λ_{target} unchanged 27: if λ_{target} unchanged 27: if λ_{target} unchanged 28: $s \leftarrow \text{STEADY-STATE}$ 29: end if 30: end if 31: else 32: Gain $G \leftarrow \alpha * xp + (1-\alpha) * sr$ 33: if $G / G_{last} \ge delta_{sig}$ then 44: $s \leftarrow \text{CONVERGING}, j \leftarrow 4$ 35: end if 36: Garg \leftarrow weight _{curr} * G + weight _{hist} * G_{avg} 37: end if	13: if $G \mid G_{last} \geq delta_{mod}$ then	thi oughput	
$\begin{array}{llllllllllllllllllllllllllllllllllll$	14: $j \leftarrow j-1$	T	7
$\begin{array}{llllllllllllllllllllllllllllllllllll$	15: Switch direction d		
$\begin{array}{llllllllllllllllllllllllllllllllllll$	16: if $j = 0$ then		
$\begin{array}{llllllllllllllllllllllllllllllllllll$	17: $s \leftarrow \text{STEADY-STATE}$ $C(\alpha, \beta)$	$-\alpha \cdot \alpha \pm (1 - \alpha)$	v).e
$\begin{array}{llllllllllllllllllllllllllllllllllll$	18: end if $U(p, s)$	$-\alpha \cdot p + (1 - c)$	<i>t</i>) · 3,
$\begin{array}{llllllllllllllllllllllllllllllllllll$			
$\begin{array}{llllllllllllllllllllllllllllllllllll$	20: if $d = $ left then		
$\begin{array}{llllllllllllllllllllllllllllllllllll$	21: $\lambda_{target} \leftarrow \lambda_{target} - 0.01*j$		
24: end if 25: else 26: λ_{target} unchanged 27: if λ_{target} unchanged for maxrounds rounds then 28: $s \leftarrow$ STEADY-STATE 29: end if 30: end if 31: else 32: Gain $G \leftarrow \alpha * xp + (1 - \alpha) * sr$ 33: if $G / G_{last} \ge delta_{sig}$ then 34: $s \leftarrow$ CONVERGING, $j \leftarrow 4$ 35: end if 36: $G_{avg} \leftarrow weight_{curr} * G + weight_{hist} * G_{avg}$ 37: end if	22: else		
25: else 26: λ_{target} unchanged 27: if λ_{target} unchanged for maxrounds rounds then 28: $s \leftarrow$ STEADY-STATE 29: end if 30: end if 31: else 32: Gain $G \leftarrow \alpha * xp + (1-\alpha) * sr$ 33: if $G / G_{last} \ge delta_{sig}$ then 34: $s \leftarrow$ CONVERGING, $j \leftarrow 4$ 35: end if 36: $G_{avg} \leftarrow weight_{curr} * G + weight_{hist} * G_{avg}$ 37: end if	23: $\lambda_{target} \leftarrow \lambda_{target} + 0.01*j$		
26: λ_{target} unchanged 27: if λ_{target} unchanged for maxrounds rounds then 28: $s \leftarrow$ STEADY-STATE 29: end if 30: end if 31: else 32: Gain $G \leftarrow \alpha * xp + (1 - \alpha) * sr$ 33: if $G / G_{last} \ge delta_{sig}$ then 34: $s \leftarrow$ CONVERGING, $j \leftarrow 4$ 35: end if 36: $G_{avg} \leftarrow weight_{curr} * G + weight_{hist} * G_{avg}$ 37: end if	24: end if		
27: if λ_{target} unchanged for maxrounds rounds then 28: $s \leftarrow$ STEADY-STATE 29: end if 30: end if 31: else 32: Gain $G \leftarrow \alpha * xp + (1 - \alpha) * sr$ 33: if $G / G_{last} \ge delta_{sig}$ then 34: $s \leftarrow$ CONVERGING, $j \leftarrow 4$ 35: end if 36: $G_{avg} \leftarrow weight_{curr} * G + weight_{hist} * G_{avg}$ 37: end if	25: else		
28: $s \leftarrow \text{STEADY-STATE}$ 29: end if 30: end if 31: else 32: Gain $G \leftarrow \alpha * xp + (1 - \alpha) * sr$ 33: if $G / G_{last} \ge delta_{sig}$ then 34: $s \leftarrow \text{CONVERGING}, j \leftarrow 4$ 35: end if 36: $G_{avg} \leftarrow weight_{curr} * G + weight_{hist} * G_{avg}$ 37: end if	26: λ_{target} unchanged		
29: end if 30: end if 31: else 32: Gain $G \leftarrow \alpha * xp + (1 - \alpha) * sr$ 33: if $G / G_{last} \ge delta_{sig}$ then 34: $s \leftarrow CONVERGING, j \leftarrow 4$ 35: end if 36: $G_{avg} \leftarrow weight_{curr} * G + weight_{hist} * G_{avg}$ 37: end if	27: if λ_{target} unchanged for <i>maxrounds</i> rounds then		
30: end if 31: else 32: Gain $G \leftarrow \alpha * xp + (1 - \alpha) * sr$ 33: if $G / G_{last} \ge delta_{sig}$ then 34: $s \leftarrow CONVERGING, j \leftarrow 4$ 35: end if 36: $G_{avg} \leftarrow weight_{curr} * G + weight_{hist} * G_{avg}$ 37: end if	28: $s \leftarrow \text{STEADY-STATE}$		
31: else 32: Gain $G \leftarrow \alpha * xp + (1 - \alpha) * sr$ 33: if $G / G_{last} \ge delta_{sig}$ then 34: $s \leftarrow \text{CONVERGING}, j \leftarrow 4$ 35: end if 36: $G_{avg} \leftarrow weight_{curr} * G + weight_{hist} * G_{avg}$ 37: end if	29: end if		
$\begin{array}{llllllllllllllllllllllllllllllllllll$	30: end if		
$\begin{array}{llllllllllllllllllllllllllllllllllll$	31: else		
34: $s \leftarrow \text{CONVERGING}, j \leftarrow 4$ 35: end if 36: $G_{avg} \leftarrow weight_{curr} * G + weight_{hist} * G_{avg}$ 37: end if	32: Gain $G \leftarrow \alpha * xp + (1 - \alpha) * sr$		
35: end if 36: $G_{avg} \leftarrow weight_{curr} * G + weight_{hist} * G_{avg}$ 37: end if	33: if $G \mid G_{last} \geq delta_{sig}$ then		
36: $G_{avg} \leftarrow weight_{curr} * G + weight_{hist} * G_{avg}$ 37: end if	34: $s \leftarrow \text{CONVERGING}, j \leftarrow 4$		
37: end if			
	36: $G_{avg} \leftarrow weight_{curr} * G + weight_{hist} * G_{avg}$		
38: end if	37: end if		
	38: end if		

Adapting λ_{target}

• Blackout example

Going Parameterless: Throughput

Success-rate

convergence rate: 150-350 rounds

Timeliness

- What is timeliness?
- Two viewpoints
 - (1) soft deadlines
 - user interaction, visualizing output from computation
 - (2) hard deadlines
 - need to get X results done before HPDC/NSDI/... deadline
- Start with (1)
- Live experimentation on PlanetLab

Some PL data

Computation Heterogeneity

- both across and within nodes

PlanetLab – lower bound

Communication Heterogeneity

- both across and within nodes

RIDGE

- RIDGE scheduling framework on top of BOINC
- PL Grid 120 dispersed worker nodes
- Test application BLAST, a Bioinformatics application for genomic sequence comparison
- M-First (M=1) consensus
- Assume fully correct

RIDGE Scheduler

PL Timeliness Trace + Soft deadlines

(a) Low Reliability Environment (LowRE): Execution-Threshold=120s (b) Moderate Reliability Environment (ModRE): Execution-Threshold=180s (c) High Reliability Environment (HighRE): Execution-Threshold=240s

reliability = # tasks completed by deadline/total tasks

Leaming Rate

Figure 7: Learning Behavior of RIDGE

Performance of BOINC: Timeliness

Figure 8: Comparison of different BOINC confi gurations.

best replication factor varies

Experimental Results: timeliness

(b) Throughput

Makespan: RIDGE vs. BOINC (task level)

Figure 5: Makespan Comparison

Makespan Comparison (application level)

(a) HighRE Makespan

(b) LowRE Makespan

Figure 11: Comparison of Request Makespan for different reliability environments

Future Work

- Mechanisms to retain node identities (hence $r_{\rm i}$) under node chum
 - "hode signatures" that capture the characteristics of the node
- Combine timeliness + correctness
- Client collusion
 - Detection: group signatures
 - Prevention:
 - Uses quizzes (ground-truth); server should run tasks occasionally
 - random group formation

Computational Makespan

Reducing makespan requires not only smart redundancy and scheduling, but smart **decomposition**

Reducing Makespan

Hard Deadlines

- Sometimes deadlines are hard
- The task which simulates a key parameter that finished after HPDC deadline may not be useful
- Many other real-time scenarios
- Challenge is again the time variability of open distributed systems

Timeliness Definition

Group timeliness: $\tau_G(D) = 1 - \prod_{i=1}^n (1 - \tau_i(D))$

Redundancy

- Two workers W1 and W2 with timeliness of .8 and .
 6 respectively for D=100
 - Objective is .9 reliability for a task (TSR)
 - Can't do it alone
- Assign both to the task => .92

$$\tau_G(D) = 1 - \prod_{i=1}^n (1 - \tau_i(D))$$

EDF (earliest) vs. LDF (latest)

- Tasks T1, T2, T3 with successively higher deadlines
- Three workers W1, W2, W3
- T1 has D1 and needs all three workers
- T2 and T3 have D2 (D2 > D1), any single worker will do)
- EDF: pick T1; T2 and T3 cannot run, tput = 1
- LDF: picks T2 and T3, tput = 2
- Coupling redundancy and deadlines is tricky

EDF vs. LDF

- LDF has good tput, but is it fair?
- T1, T2 have D1 and T3, T4 have D2 (= 2 * D1)
- Need both workers to meet D1 but either for D2

• Both have a tput of 2 but LDF is unfair to short D

The Metrics

fairness:
$$FI = \frac{\left[\sum_{i=1}^{m} x_i\right]^2}{m\sum_{i=1}^{m} x_i^2}$$
 where $x_i = \frac{X_i}{C_i} \sim \text{ of tasks completed in bin}$

tput = \sim of tasks completed by their deadline

Generalization

• LRED

- Limited Resource Scheduling Earliest Deadline

- Balance
 - Tasks requiring more nodes (shorter deadlines) reduce tput
 - Favoring tasks with shorter deadlines improves fairness (doesn't starve longer deadline tasks since their deadlines get smaller with time!)

Intuitive Behavior

 Pick task groups with smaller resource requirements (to a point), larger D => tput

Within each group of tasks, sort by earliest deadline
 => faimess

The Idea

- N: Total no. of tasks in the task pool
- L: Total no. of workers available at the scheduler
- - S₀₀ = Set of tasks that cannot be completed with probability TSR by any number of workers in {W₁,....W_L}

sort by timeliness – use the mean

Algorithm Start Points

Beginning set in the schedule

 $LRED(1) = \sim LDF$ LRED(inf) = EDF

LRED Algorithm

Algorithm 1 LRED(n)

- 1: $W \leftarrow \text{Set of all available workers}$
- Sort W in increasing order of τ
- 3: Sort the task pool in increasing order of D
- 4: while W is non-empty do
- 5: Organize the task pool into the list $\{S_1, S_2, ..., S_{max}\}$ based on τ of workers in W
- 6: $V \leftarrow$ Set of all tasks in the list $\{S_n, \dots, S_2, S_1\}$
- 7: if V is non-empty then
- 8: $T \leftarrow$ First task from the first non-empty set S_k in V
- 9: Schedule T to k most timely workers
- Update W by removing the k assigned workers
- 11: else if n < max then
- 12: LRED(n+1)
- 13: else
- 14: break
- 15: end if
- 16: end while

PL Trace

Results

TSR = .9, lowTE [80-150], modTE [120-200], highTE [200-350]

Result Summary

- Smaller n for LRED provides better throughput
- Larger n for LRED produces higher faimess
- Can be tuned
- The throughput-fairness tradeoff
 - is more visible than at high loads
 - becomes more significant as the overall timeliness level of the environment decreases
Questions?

Dynamic Communication

- Dynamically selecting data servers
- Dynamically estimating bandwidth
- Dynamic workflow optimization

• All in the context of Grid applications

Dynamically selecting data servers

- Nodes download data from replicated data nodes
 - Nodes choose 'data servers' independently (decentralized)
 - Minimize the maximum download time for all worker nodes (communication makes pan)

Motivation

- Many distributed network applications require massive data
 - HEP, image analysis, ...
 - Such datasets are often replicated to data servers
- Challenges in data delivery
 - Proximity of clients to data servers
 - Unreliability and heterogeneity of data servers
 - Load balancing

Data node selection

- Several possible factors
 - Proximity (RTT)
 - Network bandwidth
 - Server capacity

[Download Time vs. RTT - linear]

Server Selection Strategy

- Based on observations
 - Servers with low bandwidth (e.g. < 1Mbps) are to be avoided
 - even if RTT is small
 - Servers with high bandwidth (e.g. > 10Mbps) are to be favored
 - use RTT as a discriminator
 - Servers with medium bandwidth (e.g. 1-10Mbps) are best discriminated by system load

Heuristic Ranking Function

- Query to get candidates, do RTT/bw probes
- Node i, data server node j

 Cost function = rtt_{i,j} * exp(k_j /bw_{i,j}), k_j load/capacity
- Least cost data node selected independently
- Three server selection heuristics that use k_i
 - BW-ONLY: $k_j = 1$
 - BW-LOAD: $k_i = n$ -minute average load (past)
 - BW-CAND: k_j = # of candidate responses in last m seconds
 (~ future load)

Performance Comparison

Impact of Loading

Comparison of Individual Experiments

Class	LOW	Medium	High
	< 1Mbps	1-10Mbps	> 10Mbps
EX-1	5%	26%	67%
EX-2	12%	6%	82%
EX-3	0%	24%	76%
EX-4	0%	24%	76%

Take away

- Bandwidth, proximity, load, and capacity all matter!
- Both heterogeneity and load balancing must be taken into account
- But reliance on RTT and BW measurements

Dynamically Estimating Bandwidth

- Bandwidth, RTT estimation can be applied to:
 - prior situation (many workers, many data servers)
- Compute-oriented applications (e.g BLAST)
 - similar to prior situation (many workers, many data servers) although communication is less of a b-neck
- Worker selection for data-intensive tasks
 - where to place workers?

Dynamically Estimating Bandwidth

- Data-intensive computation needs access to one or more data sources data may be very large
 - bw probes to too expensive

The Problem

- Where to run a data-intensive computation (or place a worker)?
 - from a set of candidates
- Unlikely a candidate knows downstream bw from particular data nodes
- Idea: infer bw from prior observations or from neighbor observations w/r to data nodes!
- Simplify presentation: single worker, no replication, single data object

Some Observations

Past Download Speed to Download Speed

RTT and Download Speed

- C₁ may have had little past interaction with
 - ... but its neighbors muchave
- For each neighbor generate a download estimate:
 - DT: prior download time to from neighbor
 - RTT: from candidate and neighbor to responsely
 - DP: average weighted measure of prior download times for any node to any data source

Estimation Technique (cont'd)

- Download Power (DP) characterizes download capability of a node
 - DP = average (DT * RTT)
 - DT not enough (far-away vs. nearby data source)
- Estimation associated with each neighbor n_i
 - $ElapsedEst[n_i] = a \cdot B \cdot DT$
 - a : my_RTT/neighbor_RTT (to
 - B:neighbor_DP /my_DP
 - no active probes: historical data, RTT inference
- Combining neighbor estimates
 - mean, median, min,
 - median worked the best
- Take a min over all candidate estimates

NEIGHBOR

$$DP_{h} = \frac{1}{|\mathcal{H}_{h}|} \sum_{i=1}^{|\mathcal{H}_{h}|} \left(\frac{\mathcal{H}_{h}^{i}.size}{\mathcal{H}_{h}^{i}.elapse} \times \mathcal{H}_{h}^{i}.distance\right)$$

$$NeighborEstim_h(n, o) = \alpha \cdot \beta \cdot elapse_n(o)$$

where

$$\alpha = \frac{DP_n}{DP_h}, \ \beta = \frac{distance_h(server(o))}{distance_n(server(o))},$$

 $NeighborEstim_{h}(o) = median_{n_{i} \in N}(NeighborEstim_{h}(n_{i}, o))$

SELF

$$\overline{Distance_{h}} = \frac{1}{|\mathcal{H}_{h}|} \cdot \sum_{i=1}^{|\mathcal{H}_{h}|} \mathcal{H}_{h}^{i}.distance$$

$$\overline{DownSpeed_{h}} = \frac{1}{|\mathcal{H}_{h}|} \cdot \sum_{i=1}^{|\mathcal{H}_{h}|} \frac{\mathcal{H}_{h}^{i}.size}{\mathcal{H}_{h}^{i}.elapse}$$

$$SelfEstim_{h}(o) = \delta \cdot \frac{size(o)}{\overline{DownSpeed_{h}}}$$

$$\delta = \frac{distance_{h}(server(o))}{\overline{Distance_{h}}} \quad \text{must be an active probe}$$

where

this is an issue with 1000s of candidates ...

RTT Inference

We can do inference if our neighbors have an RTT to the server! Triangle inequality:

latency (a, c) lies between

||atency(a,b) - latency(b,c)| and latency(a,b) + latency(b,c)|

RTT Inference Result

- More neighbors, greater accuracy
- With 5 neighbors, 85% of the estimations < 16% error

Results

8 neighbors

Neighbor size

Data size

Chum

Take Away

- Locality between a data source and a node
 - scalable, no (or minimal) probing needed
 - allows for ranking based on bw estimates, provides RTT
- Wide application
 - useful in many scenarios based on ranking choices

Data flow optimization

• Workflow architectures

centralized data and control

distributed data and central control

Choreography

distributed data and distributed control

Comparisons

- Pure Choreography
 - More collaborative
 - WS-CDL exists but no implementations
 - Best possible performance
 - Requires users modify their services
- Pure Orchestration
 - Control and data-flow managed by a central engine
 - Worst possible performance
 - No service modification required

Middle-Ground Solution

Proxy API

public interface proxy {

//Proxy CORE methods

public boolean stage(Hashtable dataToMove)

throws ServiceInvocationError;

public Object[] returnData(String[] dataToReturn)

throws VariableNotFoundError;

public boolean flushTempData(String [] dataToRemove)
 throws VariableNotFoundError;

```
//Proxy ADMIN methods
```

public void addService(String wsdl)

throws ProxyAdminError;

public String[] listOperations(String wsdl, String port)

throws VariableNotFoundError;

- public String[] listOpParameters(String wsdl, String port, String op_name)
 throws VariableNotFoundError;
- public String[] listOpReturnType(String wsdl, String port, String op_name)
 throws VariableNotFoundError;

```
public String[] listServices();
```

Example

Back to our earlier example

Example (cont'd)

Example (cont'd)

Example (cont'd)

Issues

- Nice research questions
 - Proxy selection
 - Proxy assignment
 - Proximity
 - Load balance
- Currently exploring these on PlanetLab

Dynamic Metrics

• How to characterize and measure the behavior of dynamic (Grid) systems?

• Current metrics are absolute and therefore inadequate

• Dynamism suggests we need 'first derivative'' metrics

Metrics Today

- Typical performance metrics
 - exploit and address the common case
 - if application X is given Y resources, then Perf(X, Y) can be expected
 - $F = min/max \{ avg [Perf(X, Y)] \}$
- Average performance has always been the metric to measure success
 - completion time (minimize)
 - throughput (maximize)

Traditional Metrics

user is interested in speed only for each request

user is interested in throughput

user is interested in reliability

Another metric

- Other metrics may be useful for dynamic (Grid) systems
 - Average or common case may be less important
- Account for dynamic characteristics
 - resource availability is stochastic
 - demand is stochastic
 - execution time is stochastic
- Robustness
 - performance robustness may be as (or more) important than 'high performance''

Scheduling for Robustness

- "Robustness is the **persistence** of certain specified system **features** despite **perturbations** being applied to the system"
- Performance robustness for applications
 - small perturbations result in large fluctuations in behavior
 - perturbations are inherently unpredictable
 - "compressed" variance, yet good performance
- Perturbations
 - arrival patterns (demand)
 - resource availability
 - execution times (data-dependent)

Application execution time

- Application execution times are stochastic
- 'Heavy-tailed''scientific computing application server
 - irregular search that results from optimization problems
 - branch-and-bound
 - highly data- and control-dependent execution times
 - solve my NxN system using Jacobi ... or CG ...
 - occasional large request can dominate the workload => this is the perturbation
 - large variance

Stochastic execution times

Scheduling for Robustness

- Example 1
 - application contains two types of tasks
 - one normally distributed (N), the other heavy-tailed (H)
 - two machines can run either type of task
 - application instance has three tasks
 - one of type N (T_1) and two of type to H (T_2 and T_3)
- Scheduling
 - policy 1: balance based on expected values
 - policy 2: balance based on 99th percentile

Task	Execution Times	Mean	$\{x \mid P(X < x) = .99\}$
T_1	\sim Normal(4,1)	4	6.33
T_2	\sim Weibull(0.5, 1)	2	21.2
T_3	\sim Weibull($0.5, 1$)	2	21.2

	Schedule	Machine M_1	Machine M_2	
policy $1 =$	> S ₁	T_1	T_2, T_3	
policy 2 =	> S2	T_1, T_2	T_3	

• Robustness as a function of <u>makespan</u>

	Average Case	Extreme Case	range
Schedule S1	make-span = 4	make-span = 42.5	38.5
Schedule S2	make-span = 6	make-span = 27.5	21.5
Benefit/Penalty	2	15	

• Robustness as a function of completion time

Demand Example

- Example 2
 - independent requests to a service
 - heavy-tailed
 - three machines

- Scheduling
 - policy 1: shortest queue
 - policy 2: send to machine with most recently started execution (avoid when same req. running for a while)
 - exploits heavy-tailed property that running time is a good indicator of future remaining running time
- Robustness as a function of waiting time

Demand Example (cont'd)

Policy	Shortest queue	Robust scheduling	
Mean	18.3	9.1	
Variance	1488	538	
25%	0	0	
50%	1.5	0	
75%	18.8	5.3	
95%	90.3	54.7	
99%	191.9	108.8	

- very simple policy produced dramatically better results

Measurement

• Great - this makes intuitive sense, but how do you measure it?

- Metric gives us a tool to analyze behavior
- Also useful for exploring system alternatives
 - scheduling algorithms
 - resource provisioning
 - etc

Metric (cont'd)

Size of Disturbance

Backfiling

- Requires user estimates of parallel job run-time and # of desired processors
- Batch mode scheduling

(a) Job1 started at 8:00 am. Will finish at 10:00 am.

(c) At 8:30 am Job3 submitted. Job3 backfills Job2.

(b) Job2, submitted but can't start since it needs 4 processors. Remaining 3 reserved by Job2.

,	Jo	bź	2		Jo	b2	2
	Jo	bź	2	J	lo	b2	

(d) At 10:00 am, Job2 starts.

Backfiling (cont'd)

Disturbance: user under- or over-estimation in waiting time (user behavior SDSC supercomputer job trace

Video Server

Disturbance: demand for videos; performance metric is response time

Figure 6. SEDA-based Video Server

Video Server (cont'd)

Robustness as a function of response time

Cool Example: Sensor Nets

Figure 4.3: A Small Sensor Network

Goal is to route/aggregate all information to (1) Links are weighted in terms of cost

Could also refer to any distributed application requiring data collection

Disturbance: node failure and data loss

Sensor Net (cont'd)

Different spanning tree routing options

our robust approach

Results

Robustness as a function of data survival

Questions?

Dynamic Architectures

• Our distributed system architecture must be dynamic to cope with all the other forms of dynamism...

• Decentralization is the key

Background

- Grids are distributed ... but also centralized
 - Condor, Globus, BOINC, Grid Services, VOs
 - Why? client-server based
- Centralization pros
 - Security, policy, global resource management
- Decentralization pros

- Reliability, dynamic, flexible, scalable

Challenges

- May have to live within the Grid ecosystem
 - Condor, Globus, Grid services, VOs, etc.
 - First principle approaches are risky (Legion)
- 50K foot view
 - How to decentralize Grids yet retain their existing features?
 - High performance, workflows, performance prediction, etc.

Decentralized Grid platform

- Minimal assumptions about each "hode"
- Nodes have associated 'assets" (A)
 - basic: CPU, memory, disk, etc.
 - complex: application services
 - exposed interface to assets: OS, Condor, BOINC, Web service
- Nodes may up or down
- Node trust is not a given (do X, does Y instead)
- Nodes may connect to other nodes or not
- Nodes may be aggregates
- Grid may be large > 100K nodes, scalability is key

Grid Overlay

BOINC network

Grid Overlay - Join

BOINC network

Grid Overlay - Departure

BOINC network

Query contains sufficient information to locate a node: RSL, ClassAd, etc

Exact match or semantic match

Discovered node returns a handle sufficient for the "client" to interact with it

- perform service invocation, job/data transmission, etc

- Three parties
 - initiator of discovery events for A
 - *client*: invocation, health of A
 - node offering A
- Often initiator and client will be the same
- Other times client will be determined dynamically
 - if W is a web service and results are returned to a calling client, want to locate C_w near W =>
 - discover W, then $C_w!$

Grid Overlay

- This generalizes ...
 - Resource query (query contains job requirements)
 - Looks like decentralized "matchmaking"
- These are the easy cases ...
 - independent simple queries
 - find a CPU with characteristics x, y, z
 - find 100 CPUs each with x, y, z
 - suppose queries are complex or related?
 - find N CPUs with aggregate power = G G flops
 - locate an asset near a prior discovered asset

Grid Scenarios

- Grid applications are more challenging
 - Application has a more complex structure multi-task, parallel/distributed, control/data dependencies
 - individual job/task needs a resource near a data source
 - workflow
 - queries are not independent
 - Metrics are collective
 - not simply raw throughput
 - makespan
 - response
 - QoS

Related Work

Maryland/Purdue
matchmaking

- Oregon-CCOF
 - time-zone

Related Work (cont'd)

None of these approaches address the Grid scenarios (in a decentralized manner)

- Complex multi-task data /control dependencies
- Collective metrics

50K Ft Research Issues

- Overlay Architecture
 - structured, unstructured, hybrid
 - what is the right architecture?
- Decentralized control/data dependencies
 - how to do it?
- Reliability
 - how to achieve it?

Context: Application Model

Context: Application Models

Application Models

Component Replication

Component Replication

Replication Research

- How many replicas?
 - too many waste of resources
 - too few application suffers
- Leverage prior work!

Client Replication

Client Replication

Client Replication

Application Models

The Problem

- How to enable decentralized control?
 - propagate downstream graph stages
 - perform distributed synchronization
- Idea:
 - distributed dataflow token matching
 - graph forwarding, futures (Mentat project)

Simple Example

Control Example

Control Example

How to color and route tokens so that they arrive to the same control node?

Application Models

Collective Metrics

- Throughput not always the best metric
- Response, completion time, application-centric

Open Problems

- Support for Global Operations
 - troubleshooting what happened?
 - monitoring application progress?
 - cleanup application died, cleanup state
- Load balance across different applications
 routing to guarantee dispersion

Summary

- Taming the dynamism of open distributed systems is a challenging endeavor
 - Grids 'push the envelope" in this respect
- Grids can offer richer use cases to drive this research agenda
 - data X computation X distribution X heterogeneity
- Grids can learn a great deal from other communities
 P2P, network systems

EXTRAS

EXTRAS - OG

EXTRAS

(a) Success-Rate

(b) Throughput

EXTRA - COMM

Combining Neighbors' Estimation

• MEDIAN shows best results - using 3 neighbors 88% of the time error is within 50% (variation in download times is a factor of 10-20)

RTT Inference

- >= 90-95% of Internet paths obey triangle inequality
 - RTT (a, c) <= RTT (a, b) + RTT (b, c)
 - RTT (server, c) <= RTT (server, n_i) + RTT (n_i , c)
 - upper- bound
 - lower-bound: $|RTT (server, n_i) RTT (n_i, c)|$
- iterate over all neighbors to get max L, min U
- return mid-point

Other Constraints

C & D interact and they should be co-allocated, nearby ... Tokens in bold should route to same control point so a collective query for C & D can be issued

Other Constraints

C & D interact and they should be co-allocated, nearby ...

Token loss

- Between B and matcher; matcher and next stage
 - matcher must notify C_B when token arrives (pass loc(C_B) with B's token
 - destination (E) must notify C_B when token arrives (pass loc(C_B) with B's token

Throughput Comparison

Figure 12: Comparison of Request Throughput for different reliability environments

No loss in throughput