Enabling Linux for the Grid

XtreemOS

XtreemOS Linux-based Grid Operating System

Christine Morin, INRIA XtreemOS Scientific coordinator

MasterClass, Amsterdam, VUA, October 23, 2008

XtreemOS IP project is funded by the European Commission under contract IST-FP6-033576

Outline

- XtreemOS project
- XtreemOS vision
- VO & security management
- Demo VO & security
- Job Management
- Data management
- Demo user session
- Infrastructure for scalable & highly available services
- XtreemOS API
- XtreemOS flavours
- Concluding remarks

- 4-year IP project started in June 2006 in the FP6 framework
- 30 M€ budget, 14.2 M€ EC grant
- 19 partners
 - From 7 European countries & China

XtreemOS Consortium

XtreemOS

Enabling Linux for the Grid

- Design & implementation of an open source Linux-based Grid Operating System with native VO support
- Two fundamental properties: transparency & scalability
 - Bring the Grid to standard users
 - Scale with the number of entities and adapt to evolving system composition

Outline

- XtreemOS project
- XtreemOS vision
- VO & security management
- Demo VO & security
- Job Management
- Data management
- Demo user session
- Infrastructure for scalable & highly available services XtreemOS API
- XtreemOS flavours
- Concluding remarks

XtreemOS Enabling Linux for the Grid

Users End users - Service Administrators

- Ease of use
 - Do not want to care with Grid issues
 - Want to work with familiar interfaces
 - Want to use their non Grid-aware legacy applications
 - Simple login as a Grid user in a VO
- Secure and reliable application/service execution
- High performance
- Ubiquitous access to services, applications & data

Administrators

Site admin

Site admin

Site administrators

- Ease of management
- Autonomous management of local resources
- Should not be impacted by every single change in a VO

VO administrators

- Ease of management
- Flexibility in VO policies
- Accounting

Site admin

Developers' Needs

Ease of development of Grid applications

- Reuse existing code
- Stable API

Conformance to standard API

- Familiar API Posix
- Grid application standards

Set of integrated services (user account, process, file, memory segment, sockets, access rights)

Operating System

Single computer Hardware

Why a Grid Operating System?

XtreemOS IP project

Example: Globus Toolkit

Core GT Component: public interfaces frozen between incremental releases; best effort support

:::

XtreemOS

Enabling Linux for the Grid

Contribution/Tech Preview: public interfaces may change between incremental releases

Deprecated Component: not supported; will be dropped in a future release

Grid OS

XtreemOS IP project

15

Scale

- Thousands of nodes in thousands sites in a wide area infrastructure
- Thousands of users

Consequences of scale

- Heterogeneity
 - Node hardware & software configuration
 - Network performance
- Multiple administrative domains
- High churn of nodes

16

 Scalability with the number of entities & their geographical distribution

- Avoid contention points & save network bandwidth (performance)
- Run over multiple administrative domains (security)
- Adaptation to evolving system composition (dynamicity)
 - Run with partial vision of the system
 - Self-managed services
 - Transparent service migration
 - Critical services highly available
 - No single point of failure

Xtreem

Enabling Linux for the Grid

- Bring the Grid to standard Linux users
 - Feeling to work with a Linux machine
 - Standard way of launching applications
 - ps command to check status of own jobs
 - No limit on the kind of applications supported
 - Interactive applications
 - Grid-aware user sessions
 - Grid-aware shell taking care of Grid related issues
 - VO can be built to isolate or share resources
 - Parameter defined by VO administrator

Make Grid executions transparent

- Hierarchy of jobs in the same way as Unix process hierarchy
- Same system calls: wait for a job, send signals to a job
- Processes in a job treated as threads in a Unix process
- Files stored in XtreemFS Grid file system
 - Posix interface and semantics to access files regardless of their location
- Transparent fault tolerance to applications
- Clusters transparent to applications
 - Single System Image

A comprehensive set of cooperating system services

providing a **stable** interface

for a wide-area dynamic distributed infrastructure

composed of heterogeneous resources

spanning multiple administrative domains

20

Outline

- XtreemOS project
- XtreemOS vision
- VO & security management
- Demo VO & security
- Job Management
- Data management
- Demo user session
- Infrastructure for scalable & highly available services XtreemOS API
- XtreemOS flavours
- Concluding remarks

Requirements

Secure VO management & application execution

- Grid user and service mutual authentication
- Confidentiality and integrity of stored and communicated data
- Authorized access to data, services, resources
- Isolation
- Accountability of data access and service execution

VO Management & Security

Scalability of management of dynamic VOs

VO-centric security architecture

- Dynamic mapping between Grid VO users & Linux entities with no modification to Linux kernel
 - No centralized Grid wide data base, no grid map file needed
- Flexible administration of VOs
 - Multiple VO models supported (on-going research)
 - Hierarchical policy management (VO, resource, user)
 - Accountability of data access and service execution (ongoing)
- Interoperability with third party security infrastructures
 - Kerberos, LDAP, Shibboleth...
- Single-Sign-On

Xtreem

Enabling Linux for the Grid

VO-related Use Cases

XtreemOS

Enabling Linux for the Grid

Node Level VO Support

- Policies specified by a VO finally checked & ensured at resource nodes by the local instance of the OS
 - Standard Linux unaware of VOs
 - Isolation & access control mainly rely on user accounts, process id, file permission bits
- What is needed for Linux OS to be able to enforce VO policies
 - OS kernel should deal with VO & VO users identities
 - Identity information should be exploited in standard access control mechanisms
 - Linux OS should supply identity information to Grid level services (XtreemFS, AEM)
- NO modification of Linux kernel
 - Mapping of VO level identities & policies into local ones fully recognized by Linux

System-Level VO Support

- VO-customizable, dynamic mapping of Grid users onto local accounts
 - Integration of Grid user management into Linux using
 - Pluggable Authentication Modules (PAM)
 - Multiple low level authentication technologies into a common high level API
 - Name Service Switch (NSS)
- Interfacing with the Grid authentication services
 - Development of PAM modules to accommodate multiple VO models
 - Authentication, authorization, session management
- User space credential translation
 - NS-Switch
- Access control & logging
 - Caching of authentication data related to a process within the kernel

XtreemO

Enabling Linux for the Grid

VO services managing

- VO lifecycle (VO creation, evolution, termination)
- VO members: users, resources, their membership in VOs

Security services managing

- Credentials (e.g. identity and attribute credentials)
- Policies (e.g. VO and node level rules/policies)

Xtree

Enabling Linux for the Grid

VO and security services are operated in two scopes:

- Node scope services (aka. node services): deal with the requests from a single Linux box
- Global scope services (aka. global services): deal with the requests from multiple Linux boxes
- All VO and security services can serve more than one VO.

Global Services

X-VOMS

 VO database management system, containing details of users' VO membership and VO attributes (e.g. VO groups they belong to);

CDA: Credential Distribution Authority

- provides users with XOS-Certificates
- contain their public key and VO attributes,
- used to authenticate user and check their authorisation.

RCA: Resource Certification Authority

 provides machines with a certified list of the resources (CPU, RAM etc) they can provide for use in AEM resource allocation

VOPS: VO Policy Service

- allows flexible selection of nodes during AEM resource matching according to VO-defined policies
- VOLife
 - a web application providing a convenient front-end to the services above,
 - allowing initial registration of users, creating of VOs and allocation of users to VOs

XtreemOS IP project

32

Node Services

- PAM (Pluggable Authentication Module extensions)/XOS-SSH (XtreemOS Secure Shell)
 - Certificate-based authentication recognizing VO attributes
- Name Switch Service (NSS extensions)
 - Supporting bi-directional mapping between Global User IDentity (GUID) and local user identity (UID)
- AMS (Account Mapping Service)
 - Dynamic (and session-based) account creation/deletion
- KKRS (Kernel Key Retention Service)
 - Allows key pairs, authentication tokens, user mappings, to be cached in the kernel for use of file systems and other kernel services.
- NLPS (Node-level Policy Service)
 - Allows resource owners to specify how their Linux boxes should be exploited

VO-centric Security Architecture

Node Services

XtreemOS

Enabling Linux for the Grid

35

XtreemOS Enabling Linux for the Grid

Key Contributions

Maximum transparency

- Grid unaware applications & tools can be used without being modified or recompiled
- Integration of Grid level authentication with system level authentication
 - Creation of dynamic on-the-fly mappings for Grid users in a clean & scalable way
 - No centralized Grid wide data base
- Grid user mappings invisible to local users
- VO are easier to setup and manage
 - No grid map file needed
 - User management does not necessitate any resource reconfiguration

Outline

- XtreemOS project
- XtreemOS vision
- VO & security management
- Demo VO & Security
- Job Management
- Data management
- Demo user session
- Infrastructure for scalable & highly available services XtreemOS API
- XtreemOS flavours
- Concluding remarks

Outline

- XtreemOS project
- XtreemOS vision
- VO & security management
- Demo VO & security
- Job management
- Data management
- Demo user session
- Infrastructure for scalable & highly available services XtreemOS API
- XtreemOS flavours
- Concluding remarks

Grid Environment

.................

Application Execution

XtreemOS

Node volatility

..............

Failures

.

Application Execution Management

Objectives

Enabling Linux for the Grid

- Start, monitor, control applications
- Discover, select, allocate resources to applications

Features

- No assumption on local node RMS
 - AEM can be used without any batch system
- Job "self-scheduling"
 - No global job scheduler
- Resource discovery based on overlay networks
- Unix-like job control
- Accurate and flexible monitoring of job execution
- Checkpointing service for grid jobs

Job Control

xps

Send signals to a job

- To all its processes
- Eg. kill

Graceful job termination

Exit and wait job

Job Control: xps

+ 9164 - 00:01.29 - 00:00.13 - S

- Automatically provide information associated to jobs
- Provide mechanisms to limit the type and granularity of information collected
- Provide mechanisms to add new information
- Provide mechanisms to be notified when certain monitoring events occur (callbacks)

- Goal: checkpointing and restart for grid jobs
 - Fault tolerance
 - Migration (scheduling / load balancing)

Work Directions

Checkpointing protocols for Grid applications

- Coordinated checkpointing
- O2P protocol (optimistic message logging protocol)

Kernel checkpointers

- BLCR & Kerrighed checkpointer
 - Adapted for Grid usage (callbacks)
 - Steps for applications running on several Grid nodes
- Kerrighed checkpointer
 - Message-passing based parallel applications
- Monitoring the evolution of Linux kernel
 - cgroups, containers, name spaces
- Security issues
- Checkpoint storage

On-going Work

- Resource reservation & co-allocation
- Interface for workflow engine
- Monitoring & accounting

Infrastructure for programming AEM Services

DIXI (Distributed Xtreemos Infrastructure)

- SEDA based AEM Infrastructure
- Used to develop HIGHLY DISTRIBUTED Services
- Provides communication layer abstraction, where services do not handle the sessions or connections
- Exception h public class JobMng extends Abstract2wayStage
- XATI (Xtreem(
 - Automatic g
 - Support for
 - Fundamenta
 - Coding
 - Redunc

```
private Hashtable<String, XJob> jobsList;
```

```
...
```

```
@XOSDXATI(returntype = "String")
```

```
return job.getJobId();
```


Putting Everything Together

XtreemOS

Enabling Linux for the Grid

Outline

- XtreemOS project
- XtreemOS vision
- VO & security management
- Demo VO & security
- Job Management
- Data management
- Demo user session
- Infrastructure for scalable & highly available services
- XtreemOS API
- XtreemOS flavours
- Concluding remarks

XtreemFS Grid file system

- Persistent data
- Oject Sharing System (OSS)
 - Shared objects in memory

XtreemFS: Environment

XtreemOS

Enabling Linux for the Grid

XtreemOS IP project

63

XtreemFS: Environment

- federation: clusters can join/leave/fail
 - no centralized services at an organization
- connected over the Internet
 - complex failure cases (like network splits)
 - no control over hardware
- spanning administration domains
 - cross-organization authentication
 - virtual organization (VO) support necessary

XtreemFS: Overview

What is XtreemFS?

- A distributed, replicated POSIX file system for wide area networks
- Mountable on any Linux machine
- Secure (X.509 and SSL-based)
- **Easy** to set up and maintain

XtreemO

Enabling Linux for the Grid

- A Grid file system providing users with a global view of their files
- Posix interface
- Efficient location-independent access to data in a Grid
 - Grid users from multiple VO
 - Data storage in different administrative domains
- Autonomous data management with self-organized replication and distribution
- Consistent data sharing

XtreemFS vs. Traditional Grid Data Management

Traditional Grid Data Management

XtreemOS IP project

67

Block-based File Systems

- Unit of distribution are disk blocks
- File system addresses blocks over the network
- Metadata and block-management at central server

Object-based File Systems

- Storage devices can be more intelligent today
- Split file in parts and distribute & address them
- Only metadata at server, block management by storage devices

Object-based File Systems

several available ...

- Lustre (Open-Source)
- Panasas ActiveStore (commercial))
- Ceph (Research, Open-Source))

common properties:

- parallel designs for high-performance LAN access
- centralized, one data center, one organization
- control over failures of hardware

XtreemFS vs. Traditional Grid Data Management

- Traditional Grid data management: Simple access to heterogeneous storage resources, but ...
 - in general, whole files have to be transferred and stored locally
 - high latency to first access
 - potential waste of network and storage resources
 - local access might be slower than network access
 - no automatic replica consistency
 - usually restriction to write-once usage patterns: download of input files, upload of output files
 - no access control on downloaded copies

XtreemFS: Architecture

- XtreemFS: an object-based file system
 - MRC maintains metadata
 - **OSD**s store file content
 - Client (Access Layer) provides client access

XtreemOS

Enabling Linux for the Grid

72
Features - Metadata Management

- split up volume (DB) into smaller parts

replication •

- primary/secondary with failover
- granularity: volumes / volume partitions

XtreemOS

Enabling Linux for the Grid

MRC

volume

dir

file

file

volume DB

- name

- size

 timestamps - owner/group/ACL - content locations

extended attributes

XtreemFS: Core Features

Replication

Enabling Linux for the Grid

XtreemC

- OSD locations of replicas are part of the file metadata
- replica consistency is ensured by XtreemFS OSDs
- current state: read-only file replication in development, will be released with version 1.0 (early 2009)

Consistency Coordination

replication of files

- read/write replication
- fully transparent to client
- guarantees sequential consistency
- primary/secondary approach with fault-tolerant lease negotiation

consistency coordination

- currently at object level
- synchronous, asynchronous or on-demand

synchronous

- writing: acknowledge after all updates have been acknowledged
- reading: on any replica

asynchronous

- writing: acknowledge when performed locally
- reading: check and fetch latest data

on-demand

- writing: acknowledge when performed locally, do not disseminate updates
- reading: check and fetch latest data

XtreemFS: Core Features

Striping

XtreemOS

Enabling Linux for the Grid

- MRC stores a per-file list of OSDs
- parallel data transfer from/to multiple OSDs
- current state:
 RAID-0 supported
 (release 0.9.0)

XtreemFS: Features

- Features (current release 0.9.0)
 - POSIX-compliant interface and semantics
 - Access control via POSIX permissions and POSIX ACLs
 - X.509-based authentication, SSL encryption
 - Master-slave replication of metadata
 - Extended metadata
 - Plug-in architecture for user-defined policies
 - Monitoring and management tools

81

Implementation

Protocol

• HTTP (with JSON encoding for RPCs)

MRC, OSD, Directory Service

- staged server implementation (non-blocking I/O)
- Java (~40.000 LOC) + BerkeleyDB (MRC)

File System Client

- FUSE-based implementation (for now)
- C (~13.000 LOC)

Object Sharing Service (OSS)

Objective

Simplify data exchange and consistency maintenance in Grid applications

OSS

Enabling Linux for the Grid

Xtreem

- Provide storage for volatile objects
 - Unstructured storage: applications may store anything in objects
 - Scalability: many nodes can allocate and free any number of objects
 - Consistency: application can choose between different consistency models
- Offer familiar memory management interface
- Integrate neatly with Linux

XtreemO

Enabling Linux for the Grid

- Transactional memory
 - Several memory operatins bundled in a TA (ACID properties)

OSS

- Scalability
 - P2P techniques, weakly consistent object, multiple consistency domains, pipelined TA

84

OSS Interface

- void *alloc(size, consistency)
- void free(void *object)
- void *mmap(URL, offset, len, cons)
- transaction *bot()
- void eot(transaction *)
- void abort()
- void startup(own_ip, bootstrap_ip) Node management

Memory

management

Transaction

management

Outline

- XtreemOS project
- XtreemOS vision
- VO & security management
- Demo VO & security
- Job Management
- Data management
- Demo user session
- Infrastructure for scalable & highly available services
- XtreemOS API
- XtreemOS flavours
- Concluding remarks

Outline

- XtreemOS project
- XtreemOS vision
- VO & security management
- Demo VO & security
- Job Management
- Data management
- Demo user session
- Infrastructure for scalable & highly available services
- XtreemOS API
- XtreemOS flavours
- Concluding remarks

Three kinds of services:

- Services to store/query structured data
 - Resource Selection Service
 - Application Directory Service
- Services to <u>communicate in a scalable fashion</u>
 - Publish-subscribe
- Services to (partially) <u>hide the effects of scale</u>
 - Hide resource distribution: distributed servers
 - Hide resource failures: virtual nodes
- Main challenge: <u>scalability!</u>

Services

Resource Selection Service (RSS)

- A new P2P overlay to select resources from properties
- No delegation: each node represents itself in the overlay

Application Directory Service (ADS)

Support for dynamic information and data lifespan

Publish/subscribe

- DHT-based structure for scalability
- Unique feature: transactional guarantees
- Virtual nodes (VN)
 - Transparent replication of Java-based services
 - Dynamic choice of replication protocol
- Distributed servers (DS)
 - Transparent client handoff even in case of node failure

Use Cases

- Services offered to applications
- Services used by XtreemOS system services
 - RSS & ADS used by AEM
 - Pub/Sub, ADS to be used by XtreemFS
 - VN and DS to be used for critical components of AEM/XtreemOS/VO-Security services

Outline

- XtreemOS project
- XtreemOS vision
- VO & security management
- Demo VO & security
- Job Management
- Data management
- Demo user session
- Infrastructure for scalable & highly available services
- XtreemOS API
- XtreemOS flavours
- Concluding remarks

Application Spectrum

Wide range of applications...

- Grid aware distributed applications
- Grid unaware (legacy) applications executed in a Grid

In different domains

- E-business
 - Services...
- Scientific applications
- ... XtreemOS is an OS!

- Linux applications should run with little (no) modifications
- Grid applications should run with little (no) modifications
- XtreemOS functionality must be provided to applications

SAGA API C++ Implementation Structure

Outline

- XtreemOS project
- XtreemOS vision
- VO & security management
- Demo VO & security
- Job Management
- Data management
- Demo user session
- Infrastructure for scalable & highly available services
- XtreemOS API
- XtreemOS flavours
- Concluding remarks

XtreemOS Flavours

Stand-alone PC

Cluster

Mobile device

97

XtreemOS Cluster Flavour

Based on LinuxSSI foundation layer

- Linux based Single System Image cluster OS
 - Illusion of a powerful SMP machine running Linux
- Leverage Kerrighed full SSI
 - Posix compliant interface validated by successfully running the standard Linux Test Suite

errighed

Xtreem

Enabling Linux for the Grid

XtreemOS Enabling Linux for the Grid

Kerrighed Cluster OS

SSI

- Virtual SMP
- Legacy applications executed without any modification or recompilation
- Standard OS interface

99

XtreemOS IP project

Why a full Linux SSI?

Ease of use for non expert users

- Standard Linux commands
 - Interactive use of a cluster (without a batch)
- Execution of unmodified legacy applications
 - Including parallel applications based on the shared memory model

Ease of management

- Single instance of the OS for the whole cluster
- Hot node addition or eviction without stopping the whole cluster

Unique Features

- kDFS distributed/parallel file system for efficient data accesses exploiting compute node storage
- Framework for customized load balancing & scheduling policies
- Built-in efficient checkpoint/recovery mechanisms

- Set of distributed services for global resource management
- Implemented by a set of patches to the Linux kernel & kernel modules

XtreemOS Mobile Device Flavour

Objectives

XtreemO

Enabling Linux for the Grid

- Integration of XtreemOS services in mobile Linux OS enabling grid operation in an efficient and transparent way
- Targets
 - Grid aware use cases
 - Grid users on the move
 - Grid-transparent use cases

- Services given through a Grid infrastructure without the end users knowing it (Mobile Linux integrators)
- Portability

Mobile Device Architecture

XtreemOS

Outline

- XtreemOS project
- XtreemOS vision
- VO & security management
- Demo VO & security
- Job Management
- Data management
- Demo user session
- Infrastructure for scalable & highly available services
- XtreemOS API
- XtreemOS flavours
- Concluding remarks

First public release of XtreemOS software (open source)

- Fall 2008
- Mandriva & RedFlag Linux distributions
- http://www.xtreemos.eu & sf.net

Demonstrations

- SC '08, Austin, USA, November 16-20, 2008 (XtreemOS booth #3019)
- ICT'08, Lyon, France, November 25-27, 2008

Contributions welcome

Beta-testers, developers

XtreemOS Enabling Linux for the Grid

Reading List

XtreemOS

- ISORC 2007 paper
- Vision paper (XtreemOS technical report #4)
- Architecture deliverable D3.1.4 (updated version by the end of December 2008)
- VO & Security
 - D3.5.x (VO & security services)
 - D2.1.x (VO support in Linux)
 - IEEE Internet 2008 paper

Reading List

- AEM
 - D3.3.x deliverables
 - PDCAT 2008 paper on Grid checkpointer
- XtreemFS & OSS
 - D3.4.x deliverables
 - HPDC 2008 paper on XtreemFS
- Infrastructure for scalable & highly available services
 - D3.2.x deliverables
- XtreemOS API
 - D3.1.x deliverables
 - SAGA (see OGF documents)

Reading List

Cluster flavour

- D2.2.x deliverables
- Europar 2008 paper on kDFS
- XtreemOS technical report on customizable scheduler
- Kerrighed
 - http://www.irisa.fr/paris for scientific papers
 - http://www.kerrighed.org for software & technical documentation
- Mobile device flavour
 - D2.3.x & D3.6.x deliverables

Xtreem

Enabling Linux for the Grid

Information

http://www.xtreemos.eu

Contact

info@xtreemos.eu

Teachers

- Christine.Morin@inria.fr
- Sylvain.Jeuland@inria.fr

