lllllllll
CISCO

Buffer Bloat!

Obesity: it's not just a human problem. . .

Fred Baker

© 2010 Cisco and/or its affiliates. All rights reserved. Cisco Confidential

0'Callaghan Davenport/San Jose RTT overnight 27 January RTT Distribution: vast majority ~280 ms; peak 9281 ms

10000 10000

9000

8000

7000 1000

6000

5000

Milliseconds RTT

4000

3000

2000

1000

®Minimum ®Average “Maximum M Standard Deviation ® Median ¥ Mode

Best shown using an example... Delay distribution with odd spikes about
a TCP RTO apart;

Ping RTT from a hotel to Cisco overnight Suggests that we actually had more than

RTT varying from 278 ms to 9286 ms one copy of the same segment in queue

What is buffer bloat? Why do | care?

Because few applications actually worked

Persistent Deep Queues

- In access paths (Cable Modem, DSL, Mobile Internet)

Generally results from folks building a deep queue with permissive
drop thresholds

One DSL Modem vendor provides ten seconds of queue depth

* In multi-layer networks (WiFi, Input-queued Switches)
Channel Acquisition Delay
Systems not only wait for their own queue, but to access network

In WiFi, APs often try to accumulate traffic per neighbor to limit
transition time

In Input-queued switches, multiple inputs feeding the same output
appear as unpredictable delay sources to each other

In effect, managing delay through queue, not queue depth

- Names withheld for customer/vendor

confidentiality reasons Data_ Ce_nter
Applications

- Common social networking applications
might have

O(103) racks in a data center

42 1RU hosts per rack

A dozen Virtual Machines per host

O(2"9) virtual hosts per data center

O(10%) standing TCP connections per VM to

other VMs in the data center Ea

- When one opens a <pick your social media _ |
application> web page
Thread is created for the client
O(10%) requests go out for data
0O(10%) 2-3 1460 byte responses come back

O(45 X 108) bytes in switch queues
instantaneously
At 10 GBPS, instant 36 ms queue depth
D BN [D | O D |

Taxonomy of data flows

- We are pretty comfortable with the concepts of mice and
elephants

“mice”: small sessions, a few RTTs total
“elephants”: long sessions with many RTTs

- |[n Data Centers with Map/Reduce applications, we also
have lemmings

O(10%) mice migrating together

- Solution premises
Mice: we don’t try to manage these
Elephants: if we can manage them, network works

Lemmings: Elephant-oriented congestion management results in HOL
blocking

Underlying theory

© 2010 Cisco and/or its affiliates. All rights reserved Cisco Confidential 6

ms

20

15

10

| |
10ms _ . ;
T Fundamental Queuing theory
-.Average.delay.af.an inte:erface Is.Inversely. proportionalto
average available bandywidth
utilizatioy
L service rate
average time in; queue = —— (M/M/1)
1 = utilization
- In other words, average: delay shoots to infinity/Aloss) when a
link is fullyiused.
Independent of bandwidth (adding bandW|dth chéanges or delays the
effect, but does not solve the problem)
Not driven by the number of se using the link (it might be a lot of
little ones ara s ber of big ones)
L ——— s
p,

20

40

g0

80
utilization Graphic courtesy Sprint, Apricot 2004

100

Simple model of TCP throughput
dynamics

effective window in bytes
mean throughput = ik Y

- Effective Window: the amount
mean round trip time of data TCP sends each RTT

- Knee: the lowest window that
makes throughput approximate
capacity

Bottl K it
___o___e_rlgg__g)_a_p_)?_c_l_x ------ - CIiff: the largest window that

‘cliff’ makes throughput approximate
capacity

- Note that throughput is the same

at knee and cliff. Increasing the
window merely increases RTT,
increasing queue depth

Increasing TCP Window =

Increasing Measurable Throughput —

Yes, there is a more complex equation that takes into account loss.
It estimates throughput above the cliff.

3000000

Full Full Full
bandwidth, bandwidth, bandwidth, I
building building building
2500000 bottleneck bottleneck
queue queue L
2000000
]
2 t
E : !
=] .
2
8 :
$ 1500000 } H
3 : :
o 4 :
1000000 K .
. : Cliff |
500000 ; : KIIBB
0 T T H i T E T .hr E T : N T : T
0 1 750ms i 3 i 4360 mss ; 6:900 m$ 8
: Session durationiin seconds - :
3 > e

— Initiator Sequence

— Initiator Acknowledge

~— Destination Acknowledge —— Destination Window

—-'— Initi:htor Wingow

— Initiator Data in Flight

—*— Destination Sequence

~— Destination Data in Flight

200000

180000

160000

140000

120000

100000

80000

60000

40000

20000

Window in use

A typical TCP transfer

© 2010 Cisco and/or its affiliates. All rights reserved.

Cisco Confidential

The effect of multiple TCPs in parallel

- Case: Multiple TCPs on startup, with one sustained transfer

- Note that

The capacity is the sum of the throughput rates of the several
initial TCPs

The throughput rate of the sustained session is limited by TCP’s
low cwnd value and the rate it can increase (one segment/RTT)

16000000

14000000

12000000

10000000

8000000

seq (bytes)

= pOrt: 53466
6000000

=g DOrt: 53467
4000000

——port: 53468
w=DOrt: 53469

2000000 -~

0

69 69.5 70 705 71 715 72 725

time(s)

Tail Drop Traffic Timings

Typical variation
in delay only at
top of the queue

Mean
Latency
Correlates

> with
Maximum

Queue
Depth

The objective: generate signals early
(RED, Blue, AVQ, AFD, etc)

Correlates with

depth, min-
hhhhhhhhh

Solution approaches

© 2010 Cisco and/or its affiliates. All rights reserved Cisco Confidential 13

Three parts to the solution

- Bandwidth, provisioning, and session control

If you don’t have enough bandwidth for your applications, no amount of
QoS technology is going to help. QoS technology manages the differing
requirements of applications; it's not magic.

For inelastic applications — UDP and RTP-based sensors, voice, and video,
this means some combination of provisioning, session counting, and signaling
such as RSVP

- Cooperation between network and host mechanisms for elastic
traffic

TCP Congestion Control responds to signals from the network or
measurements of the network

Objective: find an effective window such that knee <= cwnd < cliff

- Choices in network signaling
Loss — TCP responds to loss
Explicit Congestion Notification — lossless signaling from the network

Or not: delay-based congestion control doesn’t depend on network signals
D B [D L O I

Avoiding loss: RFC 3168
Explicit Congestion Notification

- Data centers today testing ECNasa N
solution in order to avoid loss \

- Problem: different handling of ECN by
dp;fertent OS’s means it has inconsistent NS {
effects

« Problem: loss-based and ECN-based
TCPs interact in “interesting” ways

negotiation

<€ >
ee___ 4 _]ICP
*__ L] /’,v
IP IP IP

Delay-based Congestion Control

- Arguably the most stable - Vegas

appI’OaCh Didn’t work very well,
Tunes to knee plus alpha
- Several algorithms: . CalTech FAST
Vegas Simple,
CalTech FAST IPR issues

Yields systemically to loss-based models,
Tunes to knee plus alpha

Hamilton/Swinburne CAIA
Delay-based Congestion

Control cvond' = cwnd base I;];]; s
: mean
- Applicable to TCP, DCCP,
or SCTP -+ Hamilton/Swinburne Delay Gradient

Implemented in FreeBSD 9.0 and later

Tunes to minimize variation in delay when it
can, loss if it determines it is competing with
a loss-based competitor

Delay-based Congestion Control

m Implementation of the algorithm proposed by Budzisz et al. [1] ¥
(we call it HD)

m Probabilistic backoff based on inferred path queueing delay

Per—packet
backoff 4 backoff
probability : —— g(q) probability

: » Queuing
Qmin Gth Qmax delay

Figure: Per-packet backoff probability as a function of estimated
queueing delay[1]

IETF 78 ICCRG http/Awww.caia.swin.edu.au {dahayes lastewart}@swin.edu.au <

3000000
Full Full Full
bandwidth, bandwidth, bandwidth, I
building building building
2500000 bottleneck bottleneck bottleneck
queue queue queue L
N -
2000000 ’ NV
]
-1 H
£ : =
=] "
2 H
[H
L] . 1
$ 1500000 H +
g i \ i
3 i
- "
o & '
1000000 K ! .
. : Cliff |
500000 i Knee
) |l
0 ! T T T N T
0 1 3 4 5 6 8
Session duration in seconds
— Initiator Sequence —Initiator Acknowledge =~ — Initiator Window — Destination Sequence
~—— Destination Acknowledge — Destination Window —Initiator Data in Flight =~~~ Destination Data in Flight

200000

180000

160000

140000

120000

100000

80000

60000

40000

20000

Window in use

Concerns: noise in the measurement

© 2010 Cisco and/or its affiliates. All rights reserved.

Cisco Confidential

18

Map/Reduce: Why TCP?

- | think application designers use TCP because they don’t
understand what is below the Socket API

- |f separate requests use the same channel
Loss can happen even in ECN and Delay-based congestion control (although
minimized)
Head of Line Blocking will still happen

- Could we separate the requests into separate streams?
SCTP Streams

Streams can deliver out of order (No HOL Blocking of subsequent request)

Other streams can give fast-retransmit events to blocked stream (reduce
impact of HOL Block on a given request)

Looking for published
research results on data
center lemming migrations

For generic Internet use
- Objective:

Traffic is mice and elephants

Provide deep physical queue to allow for large bursts
Manage queue delay to low average

Manage in the direction of the knee

- Cisco looking at at AQM algorithms that are self-tuning
Looking at CoDel, etc
Not satisfied with what we have found so far

Looking at an algorithm based on DPLL design techniques

 Primarily interested in:

Mark/drop based on time in queue as opposed to queue depth
Relatively shallow marking threshold
Relatively deep early drop threshold

In data centers and content networks:
Delay-based TCP/SCTP Congestion Control

- Obijective:
Traffic includes mice and elephants, but contains many lemmings
Provide deep physical queue to allow for large bursts
Manage queue delay to low average
Manage in the direction of the knee

 In my dreams, hosts would implement a delay-based TCP/SCTP
SCTP streams used to minimize HOL blocking
TCP accepted on incoming sessions only

- CalTech FAST

Seeks to keep a quantum in the bottleneck queue
Adapts more rapidly than traditional congestion control — both up and down
Effective, but doesn’t compete well with loss-based algorithms

« Swinburne CAIA Delay-based Algorithm

Seeks to keep bottleneck queue statistically empty
Competes well with loss-based algorithms

