

Smart Objects and Smart Grids

Fred Baker

What is the Internet Today? Network and business

A truly simplistic model of the Internet from a business perspective

- Many components

 Internet Core transit providers
 Content Providers Google, Facebook, YouTube
 Enterprise Networks
 Residential Broadband
 Mobile Internet/Telephone
- People and companies are motivated to deploy a technology when it solves a problem that they believe they have
- Most portions of the network
 Use services from other parts of the network
 Use multiple communication technologies

Changing applications

Every 3-5 years, the Internet fundamentally changes in the payload it carries

1990: FTP, Network News, telnet

1992: World Wide Web, SMTP, multicast, experimental voice/video

1995: WWW with multiple sessions in parallel, Voice on IP

- 2000: Peer to Peer file sharing in various forms
- 2003: Web 2.0 applications like MySpace, Facebook, BitTorrent File Sharing

2008: Cyberlockers replacing file sharing

1990-present: Rise of video in various forms

Lately: Map/Reduce and Hadoop – data center distributed applications Next...

- On the commercial backbone, video is becoming dominant, primarily from ICPs that colocate with some or all of an ISP's POPs
- In private networks (Smart Grid, Health Care, Public and Private Safety) we see distributed telemetry and distributed control.

The changing home network

Related to sensor networks for health...

- Infrared
- Motion sensors
- Heart Monitors
- Pedometers

The Smart Grid: Networks and business

A brief overview of the Smart Grid

What Is A Power Grid?

- No single national power grid in North America
 - > Thousand of distribution grids connected to...
 - Up to hundreds of transmission lines...
 - powered by thousands of generators
 - organized in to 4 large interconnects in N.A. (5 in Europe)
- North America has about 3,100 electric utilities (IOU's, muni's, coops)
- Now, in the US, overlay on all that...

>About 150 control areas; 110 Balancing Authorities

Reliability Coordinating Councils and NERC regions

≻ISO's and RTO's

Conceptual Reference Model

Interconnections of the North American Electric Reliability Council in the Contiguous United States, 1998

European Synchronous Grids

The Move Toward IP in Utilities

This is where the utilities have come from – but they are making much progress

ABB RP570\71 ACS 3100 AEP Sync ASEA ADLP 80 CDC Type I/II Conitel 300/202/2025/3000 Cooper 2179 DNP3 Harrris Micro 2 Harris 5000/5000 HN Z 66 S 15 Honeywell 7000 Modbus Moore 9000 Pert 26/31 QEI Quics 2 Recon 1.1 Redac 70D/70H Redsad Rockwell 5101/5011/5012 SC1801 SCADAPAC 1 & 5 SCA 2500 SES 92 Telegyr 6500/8979 TRW 850 and System 9 Valmet Series III/V Westinghouse Wisp+ Smart Objects: What marketing people call the "Internet of Things"

Numerous categories

- Essentially a question of distributed telemetry and control
- Many communication technologies, usually not directly attached to the Internet

Powerline Communications: Primarily within/between buildings

IEC 14908, Homeplug IEEE 1901/ ITU

Low power radio

IEEE 802.15.1 Bluetooth, 802.15.4/4g Zigbee, 802.11

ANSI C12 meter management

OSI on powerline, twisted pair, or TCP/IP

Ethernet

Proprietary

 Many system architectures, not necessarily traditional
 Internet architecture + Centralized

Control

Similar to SNMP management

Internet architecture + Distributed Control

Set of controllers managing state of network application

Proprietary architecture based on standard communication technologies

Examples: IEC 61850 GOOSE, Ethernet-based Industrial robotics

Named data networks

Summarizing sensors

Content centric networking

Generic Object Oriented Substation Event (GOOSE)

• What is GOOSE?

Ethernet multicast protocol exchanging state among systems in an IEC 68150 Power Substation

Redundant optical 100/1000 MBPS Ethernets

Equipment out of phase by 1/4 Hz (4 ms) taken out of service

• Assumptions:

Even in a substation, communication is not impeded by physics Propagation delays less than 1 ms

Extensions to IP proposed
 Targeting more distributed stations

Assumptions in Named Data Networking

 Essentially a data distribution network built on publish/subscribe principles

Data distributed from **producers** to **consumers** that express **interest** "Interested" systems may include intermediate repositories

• Example of named data:

GPS location of isobars in temperature, humidity, or other factors in forests or farms

Fault data in power distribution networks

- Assumptions:
 - 1. Network layer privacy issues plus application layer summarization manage application layer privacy issues
 - 2. Consumers are interchangeable
 - 3. Producers are interchangeable
- If assumptions don't hold, application not a match for the technology

Automated surveillance

- The title makes this sound awful. Examples include health care, building management, and other very ordinary activities
- In essence, watch and capture state, and raise an alarm if something advances beyond limits
 - Motion that looks like a person in places or at times a person should not be there
 - Temperature outside a stated range
 - Lack of motion when motion is expected
- In this context, "Real time" may be in tens of seconds or minutes

Conclusions

 Smart objects are not general purpose application hosts; they embody an embedded application of some form.
 In essence, yet another market, often in a specialized network

 Cisco sees several reasonable implementation approaches, including IP networks, specialized Ethernet-based networks, Name-based networks, and others, depending on the specifics of the application.

 I haven't spoken much about this in this presentation, but we see IPv6 as key to IP-based networks, as there are not addresses for IPv4, and large subnets have value in certain use cases

Thank you.

#