# The Analysis & Mining of Globally Distributed Data

### Chapter 2. Data Mining

Robert Grossman Laboratory for Advanced Computing University of Illinois at Chicago & Open Data Partners

### 2.1 Data Mining

Extracting patterns, changes, associations and anomalies from data.

### What is Data Mining?

- θ Data mining is the semi-automatic discovery of patterns, changes, associations, anomalies, and other statistical significant structures.
- θ Data mining is one step in the data mining process, consisting of 1) ETL, 2) data warehousing, 3) data shaping, 4) data mining algorithms, 5) deployment of models

## Working with Data -End to End Viewpoint



 $\theta$  Web services play an important role in Phases A and C.

## Fundamental Question is Changing

- θ 1990s How can I build better algorithms on my data?
- $\theta$  2000's How can I make more effective use of other's peoples data?



### **Nearing a Trifurcation Point**

| <ul> <li>C \</li> </ul>         | 2000000          | OMIN A                                                   | Johns                                              | 000C                                     |              |            |              |
|---------------------------------|------------------|----------------------------------------------------------|----------------------------------------------------|------------------------------------------|--------------|------------|--------------|
| S NC                            | BI Online 1      | Mendelian Inheritance in Man                             | Hopki                                              | ns<br>rsity                              |              |            |              |
| PubMed                          | Nucleoti         | de Protein Genorme                                       | Struit                                             | ire PopSet Ta                            | wanamy       | OM         | IM           |
| he OMIM G                       | ene map present  | s the cytogenetic map location of disease genes and      | other exp                                          | ressed genes described in OMIM. Se       | e the OMIN   | [Morbid ]  | dap for a    |
| ist of disease ge<br>Search for | nes organized by | find Find Next (from the current location)               | L segment                                          | s cack on the Location to invoke NC.     | 51 Entrez Ma | ip Viewer. |              |
| Enter sen                       | e symbol, chromo | somal location, or disorder keyword to search for        | ee 'CY                                             | P1", "5", "1pter", "Xo", or "alzheimer", |              |            |              |
| <ul> <li>You must</li> </ul>    | capitalize X and | Y to search for those chromosomes.                       |                                                    | rt, s, iprot, ind, or omnomore.          |              |            |              |
| 5.41 1 ED3                      | TH 4. 18-00 6    | IDDI 4                                                   |                                                    |                                          |              | т. м       |              |
| Location                        | Sumbol           | Title                                                    | MIM #                                              | Disorday                                 | Commonte     | Mathad     | Monro        |
| Tocarou                         | Symbol           | Title                                                    | IVILIVI #                                          | Marfae gundrame 154700 (7):              | Comments     | I STRINUU  | INTOUSE      |
|                                 |                  |                                                          |                                                    | Shprintzen-Goldberg                      |              |            |              |
| 15q21.1                         | FBN1, MFS1       | Fibrilin-1                                               | 134797                                             | syndrome, <u>182212</u> (3); Ectopia     |              | A, Fd      | 2(Fbn1)      |
|                                 |                  |                                                          | lentis, familial (3); MASS syndrome,<br>604308 (3) |                                          |              |            |              |
| 15-21.1                         | HNPCC7           | Colorectal cancer, hereditary nonpolyposis, type         | 604940                                             | Colorectal cancer, hereditary            |              | Fd D       |              |
|                                 |                  | 7                                                        |                                                    | nonpolyposis, type 7, <u>114500</u> (2)  |              |            |              |
| <u>15q21.1</u>                  | SLC30A4,<br>ZNT4 | Solute carrier family 30 (zinc transporter),<br>member 4 | <u>602095</u>                                      |                                          |              | A, REc     | <u>2(lm)</u> |
|                                 | CRI1,            |                                                          |                                                    |                                          |              |            |              |
| 15q21.1-q21.2                   | C15orf3,         | CREBBP/EP300 inhibitory protein 1                        | <u>605894</u>                                      |                                          |              | R          |              |
|                                 | ONECUT1          |                                                          |                                                    |                                          |              |            |              |
| 15q21.1-q21.2                   | HNF6A,           | One cut domain, family member 1 (hepatocyte              | 604164                                             |                                          |              | A          |              |
|                                 | HNF6             | notical factor orapita)                                  |                                                    |                                          |              |            |              |
| 15-01.101.0                     | 79.6002          | Tennomodulin 2 namonal                                   | ×00002                                             |                                          |              | p          | 2            |
|                                 |                  |                                                          |                                                    |                                          |              | 🕑 Internet |              |

Web accessible Databases Data grids – transparent high end computing

Data webs – remote

data analysis and

distributed mining

2003 - 2008

Semantic webs – working with knowledge

### What will Future Data Mining Systems Look Like?



### Four Generations of DM Systems



### What Happened to Data Mining Systems During the Past 25 Years?

- θ 1980's built statistical systems which ran on workstations (SAS, SPSS, SPlus, ...)
- $\theta$  1990's we moved algorithms to clusters of workstations and new types of data (just moving out of the labs)
- $\theta$  2000's we are beginning to build systems for exploring distributed data (still being developed)

# Layered Systems for DM & PM





### Phases in the Data Mining & Predictive Modeling Process



### 2.2 Distributed Data Mining

## Extracting patterns from distributed data.

### Distributed Data Mining – In a Word



## $\theta$ Predictive models are stronger by overlaying additional data.

### Essential Distributed Data Mining Services

- 1. Scattering the data mining querying
- 2. Transporting the appropriate data
- 3. Performing the local and centralized data mining algorithms
- 4. Combining the results



learning sets

#### statistical model

 $\theta$  Data mining is the semi-automatic extraction of patterns, models, changes, associations, and anomalies from large data sets.

### 3. Example: Tree-Based Classifiers



 $\theta$  Trees partition the feature space into regions by asking whether an attribute is less than a threshold.



### Stack – Distributed Data Mining

#### Application

Statistical/DM Model (PMML)

Data Mining System

Data Ware. & Serv. (SQL, JDBC, DWTP, ...)

Services

#### Fabric

## Predictive Model Markup Language (PMML)

- $\theta$  Based on XML
- $\theta$  Benefits of PMML
  - Open standard for Data Mining & Statistical Models
  - Not concerned with the process of creating a model
  - Provides independence from application, platform, and operating system
  - Simplifies use of data mining models by other applications (consumers of data mining models)

### Model Architecture: Example 1



### Model Architecture: Example 2

