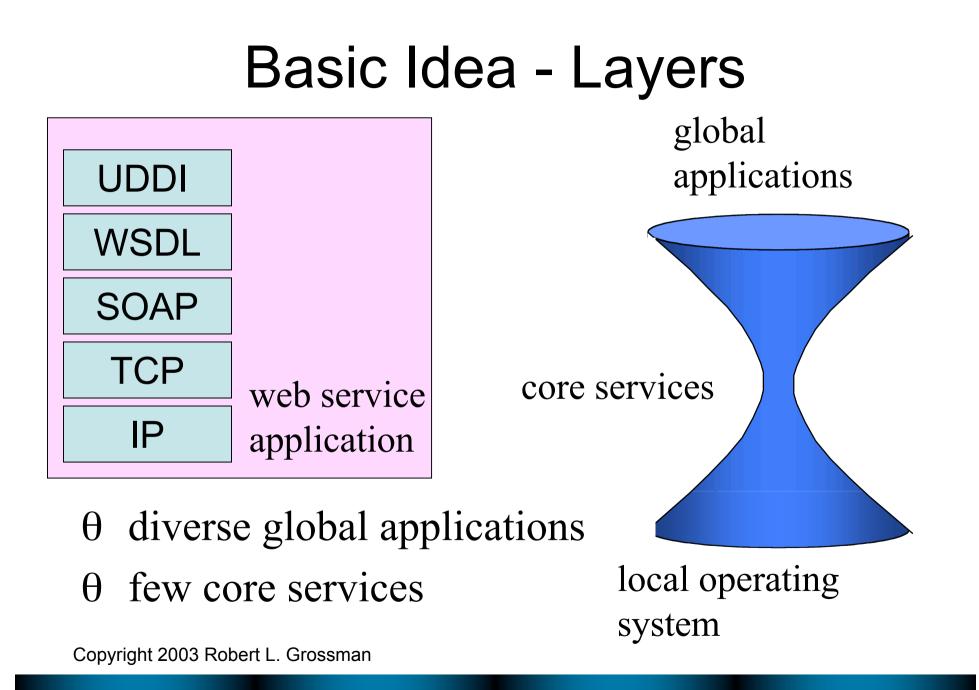
The Analysis & Mining of Globally Distributed Data

Chapter 3. Network & Data Protocols


Robert Grossman Laboratory for Advanced Computing University of Illinois at Chicago & Open Data Partners

3.1 Layers & Stacks

Stacks for web content, internet applications and web services.

Four Standard Stacks

Stacks for data grids, data webs and distributed data mining.

3 Layer Web Content Model

Content – Documents, Data, Multimedia, ...

Middleware – Software & Services

Servers, Routers, Copper, & Glass, etc.

- θ External View data grids, data webs, & semantic webs are the middle layer.
- θ Perspective of data content providers.

5 Layer Internet Model

Application (HTTP, FTP, SMTP, etc.)

Transport (TCP, UDP, etc.)

Network (Internet Protocol IPv4, IPv6)

Data Link / Path Services (Ethernet protocol, ...)

Physical Links

θ The action is below TCP: perspective is a wire stack.θ ISO 7 layer model a variant of this.

5-Layer Web Services Model

Discovery - UDDI

Description - WSDL

Packaging – XML, SOAP, XML-RPC, ...

Transport – TCP, UDP, HTTP, SMTP, ...

Network - IP

- θ The action above TCP: perspective discovery stack.
- θ Model for data webs over commodity networks.

7-Layer OSI Model

7. Application

6. Presentation

5. Session

4. Transport: TCP, UDP, messages betw. ports

3. Network: IP, ARP, routing over links

2. Data Link: Ethernet, GigE, ATM, etc.

1. Physical

Three Data Stacks

Stacks for data grids, data webs and distributed data mining.

Data Grid Layers

Application

Collective: Replica catalog, Condor, MPI, ...

Resource: GridFTP, GRIP/LDAP, GRAM, ...

Connectivity: GSI, ...

Fabric: clusters, distributed clusters, ...

θ Much broader in scope than previous layers.θ Think of as virtual distributed computer.

Data Web Layers

Application

Description & Discovery – WSDL, UDDI, DWTP catalogs, LDAP, ...

Data Services – SOAP, DWTP, XML-RPC, ...

Transport – TCP, UDP, SABUL, ...

Fabric

- θ data & metadata separated
- θ transport has specialized services for large data

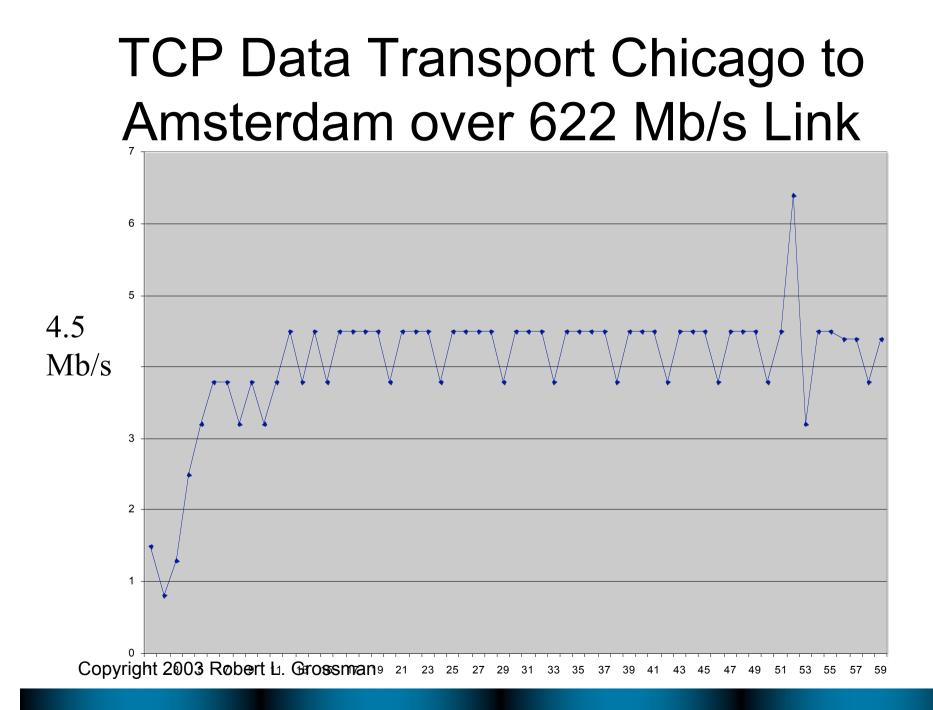
Data Mining Layers

Application

Predictive Models: PMML, XML, ...

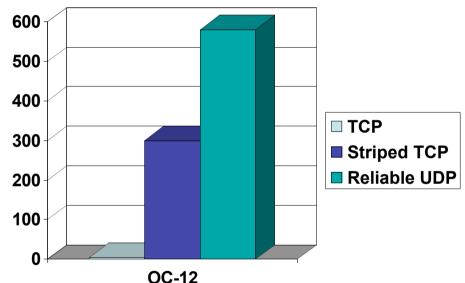
Data Mining Services: R, SAS, SPSS, ...

Data Services: JDBC, SQL, ftp, file i/o, ...


Transport Services: TCP, UDP, ...

- θ Emergence of a predictive model layer.
- θ Standardization on JDBC, ODBC, SQL, ...

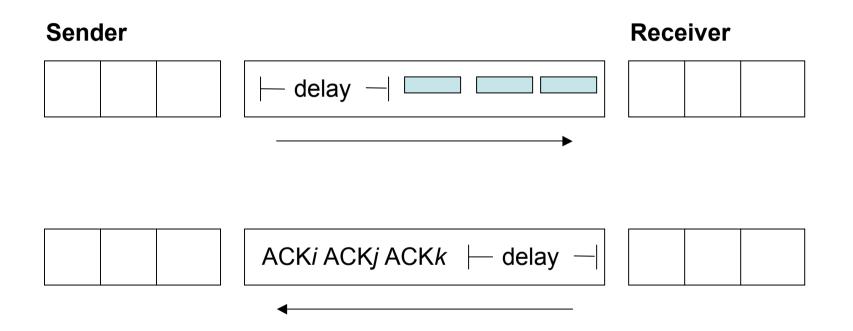
3.2 Network Protocols


Protocols for moving bits.

Adjusting Window Size, Network Striping, Separating Data and Control, and Other Tricks

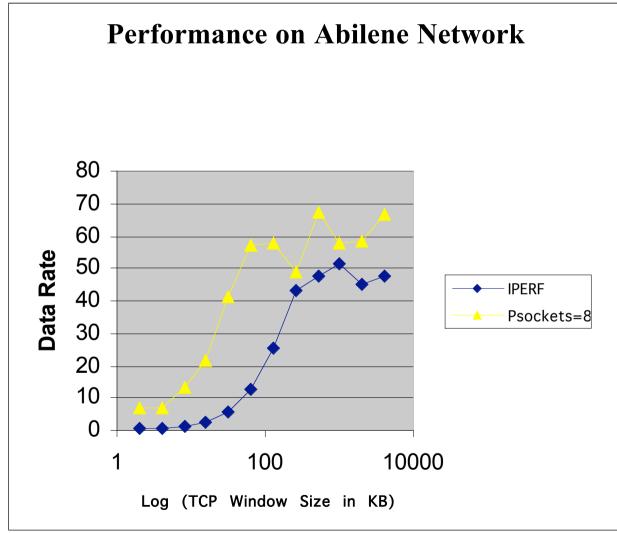
What is the Problem?

- θ TCP requires acknowledgement of packets – 1/RTT limit & is slow to recover from congestion
- θ Over 622 Mb/s OC-12between Chicago and Amsterdam
 - TCP 5 Mb/s
 - Striped TCP 300 Mb/s (PSockets)
 - Reliable UDP 580 Mb/s (SABUL)

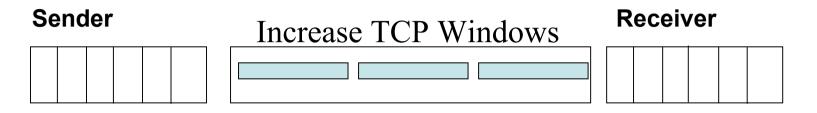

Related Work

	Approach	Implementations	Challenges
	Improve TCP	Multiple	Will it scale?
	Striped TCP	GridFTP, PSockets	Improve Performance
	Reliable, Friendly UDP	SABUL, FAST, TSUNAMI	Make friendly
	Striped UDP	P-SABUL	Interface to parallel I/O
С	Alternative Prot.		Requires new router code

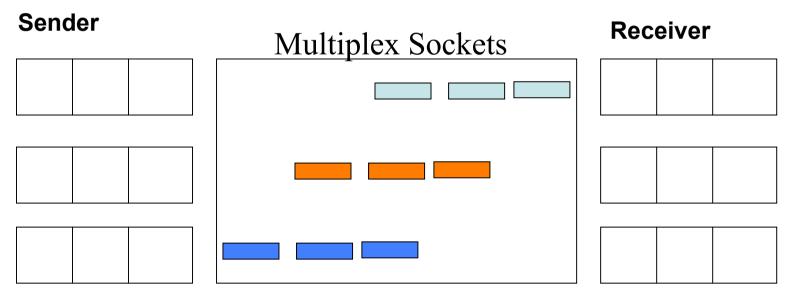
Approach 1: Change TCP Window Size


- θ Advantages:
 - improves bandwidth
 - does not require new protocol
- θ Disadvantages
 - requires careful tuning
 - requires kernel modifications along route
 - performance levels out

TCP Bandwidth*Delay Problem

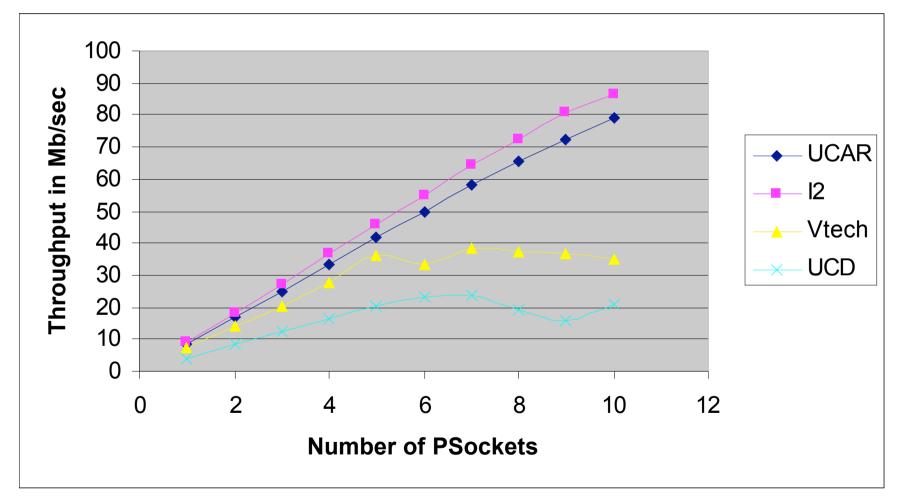

Default TCP window size, RFC 1323 not enabled.

Varying TCP Window Size - OC-3



Copyright 2003 Robert L. Grossman

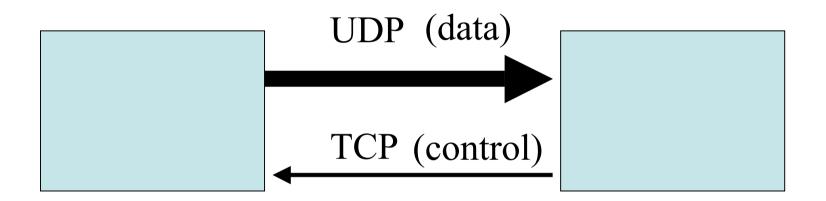
Approach 2: Network Striping



Set TCP window size to bandwidth*delay product, RFC 1323 enabled.

Default TCP window size, applications using PSockets with value 3

Network Striping with TCP Sockets (1998)



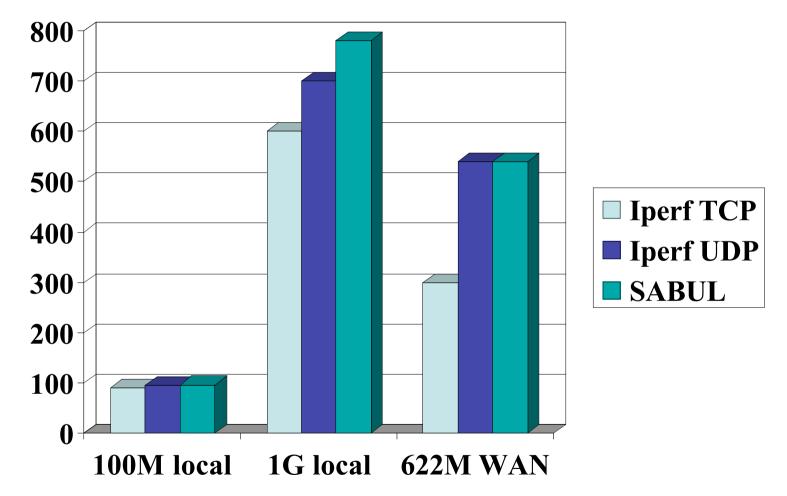
Copyright 2003 Robert L. Grossman

Approach 2: Network Striping Summary

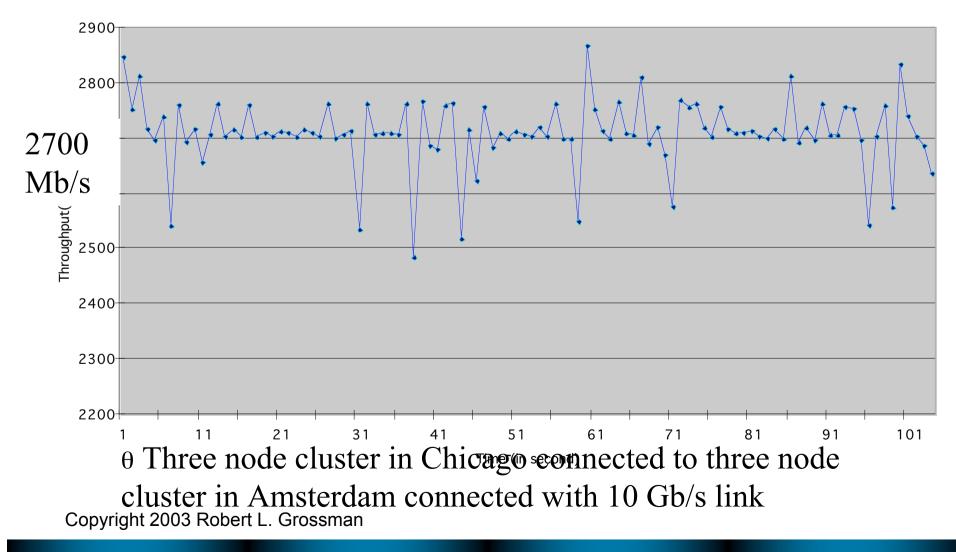
- θ Advantages:
 - improves bandwidth
 - application level library; no changes to os
 - many implementations: PSockets, GridFTP, ...
- θ Disadvantages
 - levels out after 10-20 sockets
 - better techniques for OC-12 and higher links

Approach 3: UDP Data and TCP Control

Advantages


θAvailable bandwidth utilizationθTCP friendly behaviorθPerformance independent of latency

Approach 3: Reliable, Friendly UDP


- θ High performance reliable protocol
- θ Take advantage of UDP's fast transmission and TCP's reliability.
- $\boldsymbol{\theta}$ Send packets with sequence number by UDP
- θ Exchange control information by TCP to revise packet error/loss and achieve traffic control
- $\boldsymbol{\theta}$ SABUL is an implementation

- currently version 2.2

SABUL Release 1.0 (2001) Performance

PDS Data Transport between Chicago & Amsterdam at IGrid 02

P-SABUL (Striped SABUL) Chicago - Amsterdam

TCP Stream	SABUL Stream 1	SABUL Stream 2	SABUL Stream 3	Striped SABUL Stream
4.36	902.8	902.9	907.1	2712.8
Mb/s	Mb/s	Mb/s	Mb/s	Mb/s

θ Three node cluster in Chicago connected
to three node cluster in Amsterdam
connected with 10 Gb/s link

Comparing Reliable UDP & Striped TCP

Data Set (MBs)	GridFTP (Mb/s)	SABUL (Mb/s)
100	94.9	527
500	246	476
1000	324	506
2000	315	506

θ Experiments between Chicago and Amsterdam over OC-12

Approach 3: Reliable UPD Summary

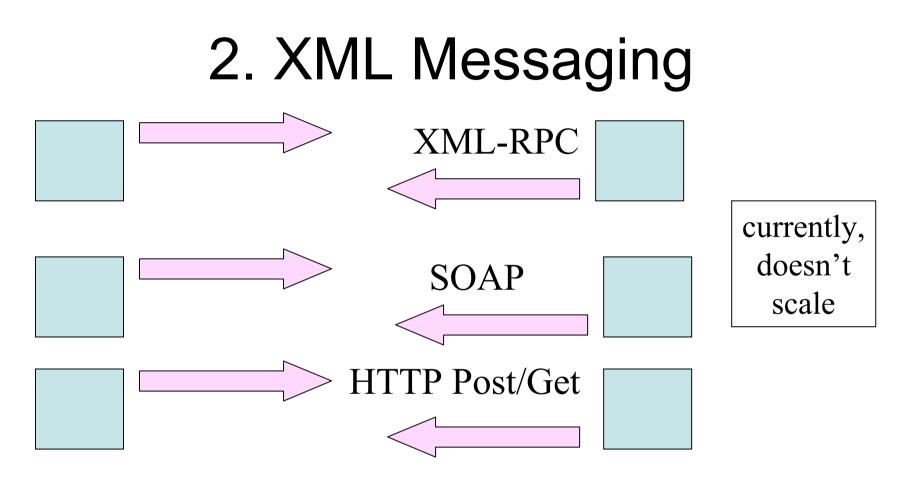
- θ Advantages:
 - application level library
 - friendly protocol
 - several implementations: SABUL, BlastUDP, ...
 - tested above 2.5 Gb/s
- θ Disadvantages
 - not as standard as TCP
 - requires that applications interface to new library

3.3 Data Protocols

Protocols for Moving Data or why data repositories are different than bit repositories.

What is the Problem?

- θ Data is different than bits
- θ Data has metadata, data has keys, data can be merged, etc.
- θ By using specialized protocols for moving data, data intensive applications can be built more easily
- θ With these protocols, distributed data mining applications are also easier to build


What are the Choices?

1. HTTP

- 2. XML Messaging/SOAP
- 3. Data Web Transfer Protocol (DWTP)
- θ Note well: ftp and its variants are for moving bits...don't even think about it...
- θ Other specialized data protocols being developed...

1. HTTP – Common in Practice

- θ In practice, data is often sent over HTTP
- θ Advantages:
 - very widely available
 - good for presenting data, not working with data
 - but SOAP, XML, etc. can be sent over HTTP
- θ Disadvantages:
 - not specific to data
 - HTML not well suited for data
 - XML is better for data, especially small data

θ XML good for metadataθ XML good for small data

SOAP

- θ XML messaging provides an application and platform independent means of sharing data
- θ SOAP is a good mechanism for sending XML messages
- θ Focus to date is on using SOAP for sending XML-RPCs over HTTP
- θ SOAP messages consists of
 - SOAP envelope
 - SOAP header
 - SOAP body

Example: SOAP Google Interface

<\$OAP-ENV:Envelope xmlns:SOAPENV="http://schemas.xmlsoap.org/...> <\$OAP-ENV:Body> <ns1:doGoogleSearch xmlns:ns1="urn:GoogleSearch" ... "> <key xsi:type="xsd:string">XXXXXXXXXXXXXX/key> <q xsi:type="xsd:string">Atta </q> <start xsi:type="xsd:string">data </q> <start xsi:type="xsd:int">0</start> <maxResults xsi:type="xsd:int">10</maxResults> <filter xsi:type="xsd:boolean">true</filter>

</ns1:doGoogleSearch> </SOAP-ENV:Body> </SOAP-ENV:Envelope>

3. Data Web Transfer Protocol (DWTP)

- θ protocol designed for data
- θ supports data, metadata, and keys
- θ separates control from data channels
- θ can subset data by rows or columns
- θ mechanisms for sampling, merging data by key, working with missing values
- θ interoperates with web services

Example: DWTP Session

- θ Discover DWTP server containing appropriate data using web services
- θ DWTP client connects to DWTP server
- θ retrieve data set metadata using TCP
- θ set data set
- θ retrieve attribute metadata using TCP
- θ retrieve 25 columns of data using 20% subset of rows using SABUL

3.4 Photonic Data Services

Protocols for Moving Data over Lambdas or what to do if you have your own lambda.

Photonic Data Services

Application – Application Signaling ...

Data Services – SOAP, DWTP ...

Descrip. & Disc. – WSDL, UDDI, …

Transport – TCP, UDP, SABUL etc.

Network – Routing, IP, ...

Path Services – set up, tear down, ... lambdas

Fabric