Vulnerabilities in the Internet

Jaap Akkerhuis jaap@sidn.nl

AmsterdamRAI

28 November 2001

Disclaimer

- Simplistic generalizations
 - –Not a network architecture course
 - –Not a DNS course
- Touching only some points
 - -Broad overview, not limited to 11th Sept events
- More analysis needed
 - -Especially on details
- Terminology Internet related

Overview

- Two perceptions of the event
- Effects of the network damage
- ISP experiences
- TLD DNS vulnerabilities
- Closing remarks

Personal experience

- Sister in Manhattan (Houston)
- Was impossible to reach by phone
- E-mail took less then 7 minutes
 - -2 minutes to provider, 5 to my inbox
 - Clock skew?

– Everything is ok

• Big failure: Phone system

Honeyman's Experience

- University of Michigan

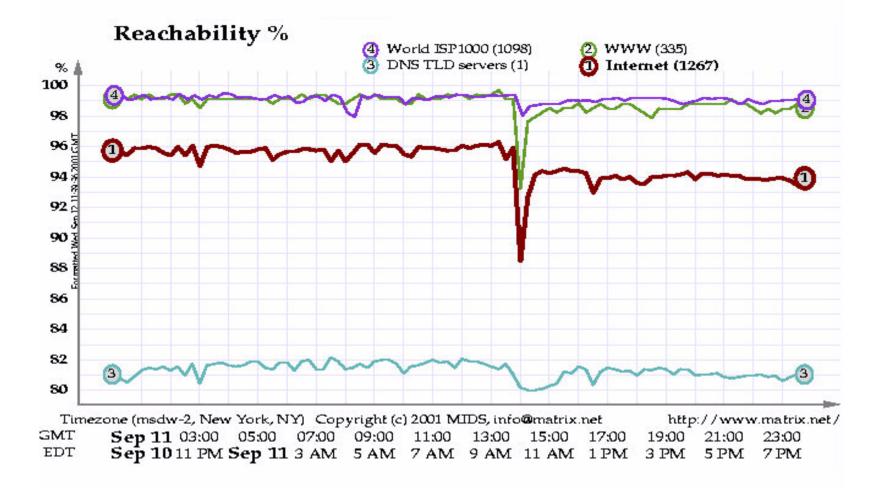
 Networking, cryptography, smart cards
- Got called
- No www.cnn.com or similar
- No Television, used Radio
- Big failure: Internet

What was going on?

- The network was out?
 - -Cnn.com is an end point
 - Much more traffic then usual
 - http is transaction oriented
 - -E-Mail is lightweight
 - Easy to route
- Phone was out?

-Not really (8 hours)

• Perception


Measurements

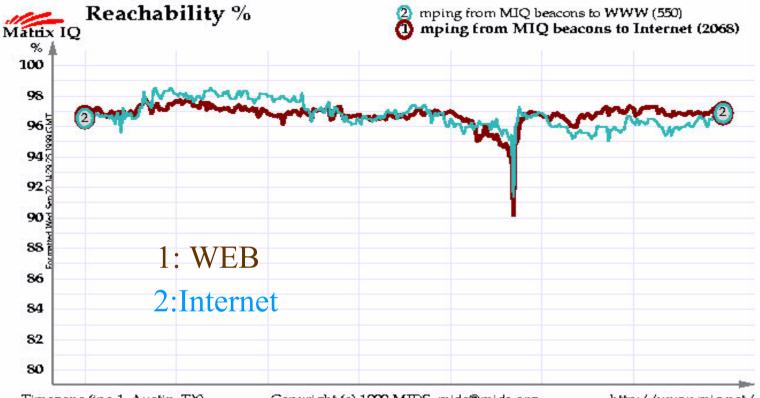
- Matrix.net (MIDS) monitors continuously
 Last 14 years
- View of the world from Austin Texas
 -60,000 sites every 15 minutes
 - beacon list contains over 10,000 entries
 - ICMP ECHO (PING) and HTTP
 - -probes from 100 points around the world
- Data supplied Peter Salus

Legenda

World ISP 1000
 WEB
 DNS TLD Servers
 Internet

The Attack

AmsterdamRAI


28 November 2001

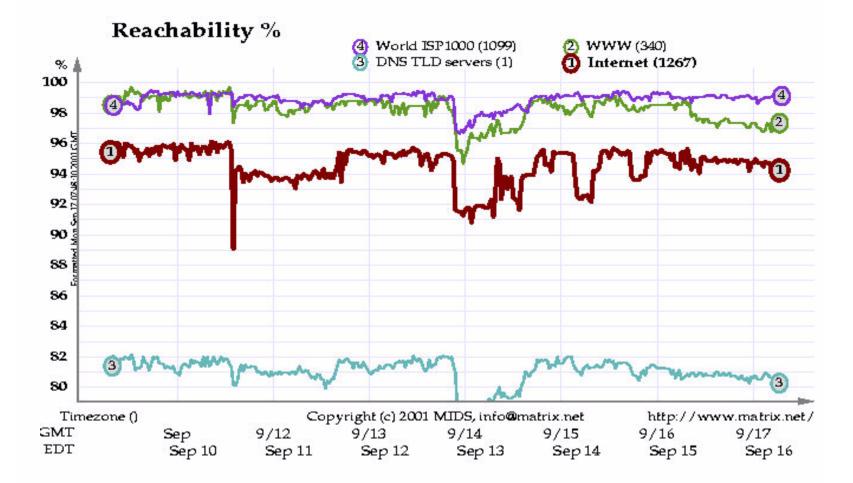
isoc NL

Effects

- WTC was major communication hub
- Telehouse (NY IX) close to WTC
- Lots of lines went out
- Rerouting takes some time

Hurricane Floyd

 Timezone (jpc-1, Austin, TX)
 Copyright (c) 1999 MIDS, mids@mids.org
 http://www.miq.net/


 GMT
 Sep 13
 12:00
 Sep 14
 12:00
 Sep 16
 12:00
 Sep 17
 12:00
 Sep 18
 12:00
 Sep 19
 12:00

 CDT
 Sep 125 AM
 Sep 135 AM
 Sep 145 AM
 Sep 155 AM
 Sep 165 AM
 Sep 175 AM
 Sep 185 AM 3 PM

AmsterdamRAI

28 November 2001

Events surrounding 11 Sept.

AmsterdamRAI

28 November 2001

isoc NL

Events following 11th

- Anticipating power failure at Telehouse
 ISPs set up extra peering at exchanges
 - -Big operators helped out competitors
 - –Extra multi homing by various ISPs

Comparable Outage: AMS-IX

- Amsterdam Internet Exchange (July 2001)
 one of the major European IXs
- Problems
 - Two out of three locations broke down
- Hardware problems
 - -Triggered by specific multi vendor combinations
- Took about a week to solve

Phenomena in Europe

- Medium sized Dutch ISP
- Big international ISP

Experiences ISP-W

- Description of operation
 - -Medium sized Dutch ISP
 - -10 year in business
 - -Transit with Telehouse (Broadway 25)
 - -Major peering as well
 - -Hosting farm at Telehouse
 - -Minor peering at AMS-IX

Experiences ISP-W

• Extra measures

-More peering & alternative transit

- Result
 - Transit OK
 - -Hosting farm 1 week out

Experiences ISP-W

- Lessons learned
 - –Network designed with redundancy
 - –Need to think about more then the network security
- Transatlantic cable cut (3 weeks ago) was worse
 –56 hours down

Reflections by *BIG* ISP on 11th

- Lots of extra transit
 Need to be flexible
 Strong arm the CFO
- Lots of multi homing set up –Grow of routing tables (20%)
- Not always effective
 - -Routing policies of other ISPs
 - -Router memory exhaustion

Reflections by BIG ISP

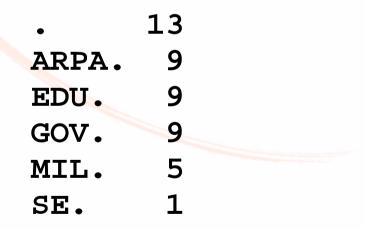
- Costs of redundancy policies

 Threefold redundancy in transatlantic cables
 - In the end, it's all economics
- Transit at internet exchanges
 - -Single point of failure
- Routing aggregations policies (Ripe NCC)
 Trims size of routing tables
 - -Uses more IP address space

TLD DNS Vulnerabilities

- DNS: Hierarchical distributed structure and name resolving
- Specific examples are neutral -using .nl, .de, .uk, .be, se. to protect the innocent
- Results, needs further study:

–useless statistics

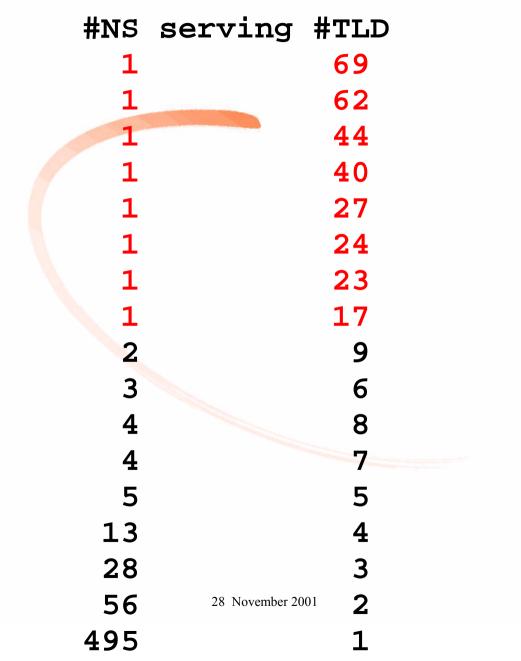

Root zone file analysis

- Resource Records: 1859
 - -1 SOA record
 - -1 TXT record
- 255 TLDs
 - -1216 Name server (delegation) records
 - Example: NL. 172800 IN NS SUNIC.SUNET.SE.
 - 5 Records per tld
 - -641 Glue records
 - SUNIC.SUNET.SE. 172800 IN A 192.36.125.2
 - -Less then 3 per tld

Root zone analysis (cont.)

- No. of root servers: 13
- TLDs sharing in root name servers

– ARPA. 172800 IN NS A.ROOT-SERVERS.NET.



TLDs with specific Name Servers

NL. 172800 IN NS SUNIC.SUNET.SE.

4 m т тъ	-	Щ	
#TLD	ın	#name	servers
1			10
3			13
14			8
22			7
30			4
44			3
45			5
45			2
48			6

of Name Servers for TLDs

AmsterdamRAI

isoc NL

Closing Remarks Supported by de. and nl.

- The packet switched internet network works
 - -Control structure distributed by nature
 - –Don't fix problems by adding central control
 - -Strengthen the distributed control
- More risk analysis needed
 - –Network level
 - -DNS implementation

Questions?

AmsterdamRAI

28 November 2001

isoc NL