cecma

aniadlfti ECMA-376
- - 1t Edition / December 2006

Office Open XML File
Formats

o,

Rue du Rhéne 114 CH-1204 Geneva T.+4122 849 6000 F: +41 22 849 6001

oecma

Standard
ECMA-376

15 Edition / December 2006

Office Open XML File
Formats

Ecma International Rue du Rhoéne 114 CH-1204 Geneva T/IF: +41 22 849 6000/01 www.ecma-international.org

O 00 N o wu

11

12

13

14

15

16

17

18
19
20
21
22
23
24
25
26
27
28
29

30
31
32
33
34
35
36
37
38
39
40

Table of Contents

Table of Contents
0T = Vo T o vii
QYo T ot o N viii
Y oo o = 1
2. CONFOIMANCE ...uiiiiiiirernniisiiniiiirerssesssiseitieresssssssssssttmresssssssssssttreesssssssssssssseesssssssssssssssessssssssssssssssssnnssssssss 2
2 R CTo -1 USSR 2
D 11 U 1= PP PPPPPPPPPPIRE 2
2.3 What this Standard SPECITIES.......uiiiiiiiii ittt ett e e et e e e et e e e e sbteeeeebaeeeesastaeeesasteeaeanns 3
DA S o TolU [Y=Y oY ol oY] {04 g =1 o T USSP 3
2.5 APPlication CONFOIMANCEcci ittt e e e et e e e et e e e e ebteeeesbteeeesntaeeesstaeessasseeasanns 3
2.6 INtEroperability GUIAEIINES......c.uviii ettt e e et e e e et e e e s ebteeeeebteeeeenteeeeestasaesnstesaeanns 3
3. NOIrMAtiVe REFEIENCES.......ciieeeciiiiiceeiireceereteceeeenaeeseenaneseenasseseennsseseennssssesnsssssesnnssssennsssssennsssnsennsssnnennn 5
L B 1= 14 V14T o T 6
5. Notational CoONVENLIONSciiiireiueiiiiiiiiiiiriiii i saassssss s s s e e s snasssssssssnesssnnsssssnss 8
6. Acronyms and AbDreviations...........cciieeeiiiiiiiiiiicc e s rera e s ee e s e ena e seennsseseennssssesnnssseeennsnarennnananenan 9
2 =T T=T & 1 0 T o g1 o1 o TSRt 10
T O =T 4V N 11
8.1 Packages aNd Parts.......ccceiiiiiiiiiiiieci e e 11
A 0o o [V 13 V=T §3F [[o I o Yo (U Tl <] PR 11
0 T\ VLo T o o] o Yol XYY [1Y/ | U URPRt 11
Y o1 =T= 1o) a V=Y =1 o Y, O RS 12
8.5 PreSeNntatioNIVILcoi ittt e st e e e e e b e e s e nbe e e s e nreeeeenares 13
8.6 SUPPOITING IMILS . ciiiiiieiiee ettt ettt e e e s s sttt et e e e e s ssaabb e e eeeeesssasssaaaaaeessssssassssaaeeesssnssssrenneeessssnnssens 14
8.6.1 DIrAWINEIML c..ceiiiiiiiiiiieie ettt ettt et e sttt sat e st e e sabe e s bt e s abe e s beeesabeesabeesbaeesabeesbteeanteesbaeenabeenas 14
8.6.2 WIMIL ettt ettt et sttt et ettt et e a b b e e e b ee e e bt e e shte e st e e e bt e e sabeesbteeeateesbaeenabeena 15
8.6.3 CUStOM XML Data PrOPerti€S ..uueiiiiiiiiiiiiiiieti e ettt e essiirte e e e s s ssire e e e e e e s s s s sabbeaeeeessssssssneaaeeeesens 15
I A S 1[I oo =T o =PRSS 15
B.0.5 IMIAtN et ettt e e e e e s be e e hte e st e e s bt e e s beesbeeeaateesbaeenareena 15
N T = 11 o1 1o T={ =T] 1 VPRSP 15
L2 T - Vol - PO UOTUPN 16
9.1 Constraints on Office Open XML's USe Of OPC.......coiiiiiiiiiiiiieccieee ettt vee e s sabre e s sabre e e s 16
.01 Part NGBS ceeeeiiiiiiiiiiiiiiiiitti et aan 16
1S A - T 1 Vo Lo [1YY 1o V-SSP 16
1S 20 R T o = =40 0 <1 01 7 16
9.1.4 PhySICal PACKAEESvveeiiciiieeiiiiie e ettt ettt e ettt e e e et e e e e et e e e e ebteeessbteeeeebaeeeeebtaeeesstaeaesstaeaesastaeasanns 16
1 T 1o T o [T 1V o = SR URRN 16
9.1.6 UNKNOWN PAItS . .ciiiiiiieiiiiiies ittt e ettt e e ettt e e e stte e e s st e e e e sabtaeeseabtaeesebaeeeeenstaeesanstaeeesnseneesanseneenanns 17
1 A - 1 o T 1 =T o TSP 17
1o 200 10 T 1o 1Y 7= 1o I = SRR 17
9.1.9 UNKNOWN Rel@tioNSIPS ... eeeiiiieiiee ettt e e e e e e e et e e e e e e e s saasbe e e e e e e e s sennsaaeneeaeeean 17

(o]

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28

Table of Contents

9.2 Relationships in Office OPEN XIMIL..ccccieeeiiiiiiiee ettt e e e e et ee e e e e e e e s ab s s e e e e e e e eesnnsraaeeeeaseenannes 17
10. Markup Compatibility and EXtensibilityccceeiiiiimiiiiiiiiiiiiiciiiienreses s resesssssesesssssenenes 23
10.1 Constraints on Office Open XML's Use of Markup Compatibility and Extensibility.......c..ccccecvveeieiinennnas 23
10.1.1 PreserveElements and PreserveAttribULESccuviii i 23
10.1.2 Office Open XML Native Extensibility CONSTIUCESccuviiiiiiiiiiiiiee e 23
11, WordproCesSiNGIVILcccueiiiiieuiiiiieniiiiensiiiienssssiiessssiisssssssmsssssssmssssssssssssssssessssssssnsssssssnsssssssnsssssssnnsss 24
11.1 Glossary of WordprocessingML-SPecific TEIMSueii it e e e e are e e e s saraeeeeaes 24
A Yol T I o (U o A PSP PUURNE 25
LL.3 Part SUMIMIA Y i 27
11.3.1 Alternative FOrmat IMPort Part........oociiii ittt s ree e e ree e e e arae e e enrae e e e nnnees 28
11.3.2 ComMmMENES Part. 29
11.3.3 DoCUMENT SELLINGS Part ...eeeiiiiiieiiiteet ettt ettt e e e e s st e e e e e e s s s sasbeneeeeesssanannns 31
R S Yo o [o Y - [AR S PSP 33
I R T oo Yo B I o] L= 2 o PSPPSR 35
11.3.6 FOOTOr Part e a e e e e e e e e aaeens 36
11.3.7 FOOTNOTES Palt. .o e e e e e e e e e e e e e e e e e aaeens 38
I S B € (o I3 - TV B Lo Yol U o =Y oL - [SRR 41
N I o 1T L= gl T o PSPPSR 43
11.3.20 Main DOCUMENT PAlTuuiiiiiiiiiiiiiiiiieee et e ettt e e e e s ettt et e e e e s s s sitbaeeeeeeessssassbeaaeeeesssasssssenaaaeesssnnsnnns 46
11.3.11 Numbering DefinitioNs Partc..uei it ree e s ree e s s abee e e s abee e s e nnees 48
11.3.12 Style DefinitioNs Part......coocciiiiiiiiei ettt e e et e s e st e e e st b e e e e e sbee e e eabeeeeenreeeeennrees 51
I e B VY=Y o BT = - o R 52
I B T Yol U o =T ol =T o o] = RPNt 53
L0 FramMIBS TS i 54
11.6 Master Documents and SUDOCUMENTSccuuiiiieiiiee ettt et e et e e e et e e e e e bee e e e eaaeeeeesreeaeeans 55
11.7 Mail MEIZE Data SOUICE....ccciciiieeietiiee ettt e e e ettt e e ectteeeeetteeeeebteeeeeabtaeeessssaasassaeaesssaeasaastasasansseeassastenananns 56
11.8 Mail Merge HEader Data SOUICEciiicuiieeieiieee ettt e e eette e e eette e e e e tte e e e eteeeesebteeeesstaeesesesaasaassesesenssanananns 57
e I Y I - 101 (o a4 =Y 4o o TSPt 58
iy Y =T T £ 1 T=T=1 4 1Y PP 59
12.1 Glossary of SpreadsheetML-SPECITiC TEIMSceiiiciiiie ettt e e et e e e e eate e e e e are e e e eearaeaeeans 59
12.2 PACKAEE STIUCTUIE....oeiiiiiiie ettt ettt e e et e e e et e e e e e bteeeeebtaeeeebtsea e e seeeaeassaaeeassseaaanseseesassneseaassaeananns 60
12,3 Part SUMMIA Y e 62
20 T R - (ol U] = o o o F= 11 1 - o AP 63
0 B € o ¥- 1 0] o =T A 2= AU TRP 64
12.3.3 CommeENtS Part. .o, 65
12.3.4 ConNECHiONS Part ..o, 67
12.3.5 Custom Property Part.......ooo i, 68
12.3.6 Custom XML Mappings Part ..., 69
0 B A B 1 -1 (o4 o 1o o= o SRR 70
12.3.8 DraWINGS Part oo 72
12.3.9 External Workbook REfErenCeS Partccccuueiiiiiiiieiiiieee ettt cstee s esiee e e svee e s vee e e snree e e s avae e e e nnes 73
I T (O Y =1 o - - - o APPSR 75
0 N A 1Yo 1= o [o [o PSPPSR 78
12.3.12 Pivot Table Cache Definition Part........c..ceiiiiiiiiiiiie sttt sree e s e aree e e e arae e e e ennes 79
12.3.13 Pivot Table Cache RECOIAS Part.......ccccuiiieiiiiieeeiiiee ettt et e s e ee e e sare e e e e bee e e s arae e e snraeeeennnees 81
I N A O LU T YA - o1 I - [o PP 82

O 00 N O U A W N B

31
32
33
34
35
36
37
38
39
40
41
42

43

45
46

Table of Contents

12.3.15 Shared String Table Part. ...ttt et e e e e e e et e e e e e e s e e snnbraaeeseesessnssesaseaeesennnnnes 83
12.3.16 Shared Workbook Revision HEAders Partcccuueiiiiiiiiiiiiiiec ettt 84
12.3.17 Shared Workbook ReVISION LOG Partccccuueiiiiiiiieiiiieee ettt esiiee e esiree e s sivee s s s ree e s saree e s savae e s snnes 85
12.3.18 Shared Workbook User Data Partc..ciiviiiiiiiiiieccieee ettt esee e s see s s ree e s bee e s avee e s s 87
12.3.19 Single Cell Table DefinitioNs Partccueiiiiiiiiiie et see e e ree e s ree e s s 87
I B O B A [T oY PP 89
12.3.21 Table DefiNition PArtcocciiiiiiiee ettt e et e e e re e e e st e e s eatae e e e nabaeeeenreeeeennreeeeennsens 90
12.3.22 Volatile DEPENUENCIES PAlT....cciiciiiieeciiiee ettt ettt ettt e e et e e e st e e e s et ae e eeabaeeeenreeeeennbeeesennsees 91
020 T2 T VAV e T4 4 o Yo Yo] - [o PP 92
I I VYo Y4 4 oY1= Al o= PR 94
12.4 EXEErNal WOIKDOOKSeviieicieiee ettt ettt e e e e tte e e e et e e e e e bte e e e sabtaeesenbeeeesensaneesssseeananns 96
13, PresentationIVILc.cciiiieeiiiiiiieiiiiirieiiiiieiiiiirieis s irrassssrsaessssrsssssssrsssssssrsssssssssssssssssnsssssssnsssssssnnses 98
13.1 Glossary of PresentationML-SPpeCific TEIMS......uiiiiciiii ittt e e et e e s eare e e s ssataeeeeans 98
T - ol T I o U AU ¢ U UU PRt 98
13,3 Part UMM Y e 101
13.3.1 ComMMENT AULNOIS PArt ..c...eeiiiiceee et et et e e e et e e e et e e e e e abae e e e abeeeeeeareeeeenrees 102
13.3.2 CommMENES Part. .o, 103
(ST I T o - Yo (o TN Y =T o] ol =T o PR 104
13.3.4 NOtesS Master Part ..., 106
T R T (\Fo) (TR 1o [l oY RSP 107
13.3.6 Presentation Part ..., 109
13.3.7 Presentation Properties Part.......ccco i, 111
S T8 T [o [- [o PRSPPSO 111
ST I [o L I 1o TU L B oY PRSP 113
0 N O Y 1o Lo Y T =T gl o o SRR 115
13.3.11 Slide Synchronization Data Part........ccceeiiciieiieiie ettt ere e e e e e e be e e e s eare e e e eanes 116
13.3.12 User Defined Tags Part.....ccccuiiiiiiiee ettt ettt etee e e e etee e e st e e e s eabae e e sabae e e ssnbaeesesnseeessnnsens 117
13.3.13 VIEW Properti@s Partuuiiieiiiiiiiiiiieee ettt ettt e e e s s st e e e e e s s s s saabeaaeeesesssssssbenaaesesssnsnnns 118
13.4 HTML PUDBIISH LOCATION . uvtieiiieiiit ettt ettt ettt ettt sabe e st esbbe e sabeeesabeesabeesasbeesabaeensneas 119
13.5 Slide Synchronization SErver LOCAtioNcccuiiiieciiie ittt e s e e e s saeae e e s saeae e s srnaaeee s 120
14, DraWiNEGIVIL....ccuuiiuniiiniiinniiinesiieessiensiiesstrssssiasssresssssssssrssssrssssrsssssesssssssssrssssssssssssssssnssssssssssnsssensssanssss 122
14.1 Glossary of DrawingML-SPeCific TEIMSuiiiiiiiie et e e e e e e saer e e s esaeaeeesensaneen 122
LA.2 Part SUMIMIA Y et e aeaaaaeaeaaaaaeaeaeeaaeeeaaeeeeeaeanaaeees 122
L4.2.1 CRArt Part coeeee ittt ettt ettt st e ettt e st e e s at e e sabe e s bt e e s bt e sabteeaabe e s beeesabeesabeesbbeesbaeenareena 123
14.2.2 Chart DraWing Part......cciiiociiie ittt ettt e et e e e ettt e e e e st te e e st e ee s sabeee e e nbaeeeesabeeeeesnseeeeennsees 125

I N T B 1 -4 =T 0 s W @] Fo T L o o PP PP 126
14.2.4 Diagram Data Part.....cccccuuiiieeiiiiiiiiiieee s ettt e e e s e s sttt e e e e e s s s saabtaeeeeesssssssbaaaeeeeessassssrenaaeeesssnsnnnns 127
14.2.5 Diagram Layout Definition Part........ccceiiiiiii ittt e e e vee e e et e e e e eara e e e e 128
14.2.6 Diagram StYIE Part.....cuieeiiiiiee ettt e e e et te e e e et e e e et e e e e et ae e e e e beeeeeearreeeenrees 130

I 0 A 1 1=Y 0 s TN o T USSP 131
14.2.8 Theme OVEITIAE PArt.......uiiiieiiiicciiiiieee e eectte e e e e e e et e e e e e e e e s bt aeeeeeaeessannbeaaeeeaeesssannssasneseesenannnes 133
N e N =1 o] [T Y 1T o2 T PSS 134
BT 1 T T =T o SRRt 136
0 A € (o 1= VA o} Y = T <To I =T o [SR 136
15,2 Part SUMIMIA Y e aaaaaaees 136
15.2.1 Additional CharacteristiCs Part.........cccuiiiiiiiie ettt et e e e e e bae e s e be e e s s araee e earees 137

O 00 N O U A W N B

e o e =
i B W N B O

16

Table of Contents

T AU o [o T oY PRSPPI 138
15.2.3 BIiblHOGraphy Part...c.cccueiei ettt st e e e sbee e e st e e e e e e e ee e e e e bee e e e nreeeeenrees 139
15.2.4 Custom XML Data Storage Part ... 140
15.2.5 Custom XML Data Storage Properties Part ... iiiiiieiieeeiirttee et e e e iieree e e e s e s 141
15.2.6 Digital Signature OriZin Part.......cccii it e e e s e sbee e s s sbee e s ssnbeee e enres 141
15.2.7 Digital Signature XML SigNature Part........ccceeiiiiie ettt eetre e e vee e e e evee e e e earae e e 142
15.2.8 Embedded Control PErsistENCE Partccoceiiiiieriieeiiieesieeesite e sreesiteesie e sbee s sareesbeesnaeeesebeeesaaeenas 143
15.2.9 Embedded ObJECE PArt......ccuiiiiiiiie ettt ettt rtee e e e tre e e et e e e e e abae e s e abte e e eenraeeeenrees 146
15.2.10 Embedded Package Part.........co ittt ette e et e e et ae e e e bae e e e ba e e e e araee e e nrees 148
15.2.11 File PrOPEITIES .uevieeeeciiee ettt ettt et e e e et e e e et e e e e e abee e e e eabaae e e sbeeeeeaabeeeeennbaeesennbeeeeennseeeeannsens 149
15.2.02 FONE Pl e ittt e e e e e ettt e e e e e et r e e e e e e e e e e bt e e e e e s ee e nnraeeeeeeeeeannnne 154
15.2.03 IMaAgE Part oo 154
15.2.14 Printer Settings Part .o, 155
15.2.15 ThUMDBNAI PArt...cciieeciieeciee ettt sttt s e et e e s te e et e s s abe e ebaeesateesnbeeessseesnseseseeesnseeenssnanns 156
T K Y AT [To N =Y o PRSPPSO 157
15.2.17 VIML DIraWING Part cooooeeiiiieeeiee ettt ettt e e s e sttt e e et e s s s saabtaaeeeesssssssbtnaeeeesssnsnsssnaaeeesssnsannns 158
T I o 7o =T o 111 PSR 159
LN 1= TG WO 5 1 oL = '] 161
ANNEX B INAEX ...uiiiiiiiieiiiiiiiiiiiiiieieeiiiiiiiiisessesssisiiiiieesssmsssssistteresssssssssisstmeesssssssssssssteressssssssssssssessssssssssss 163

Vi

Foreword

Foreword

This multi-part Standard deals with Office Open XML Format-related technology, and consists of the following
parts:

e Part 1: "Fundamentals" (this document)

e Part 2: "Open Packaging Conventions"

e Part 3:"Primer"

e Part 4: "Markup Language Reference"

e Part 5: "Markup Compatibility and Extensibility"

Parts 2 and 4 include a number of annexes that refer to data files provided in electronic form only.

Vi

10

11
12

Introduction

Introduction

This Part is one piece of a Standard that describes a family of XML schemas, collectively called Office Open XML,
which define the XML vocabularies for word-processing, spreadsheet, and presentation documents, as well as
the packaging of documents that conform to these schemas.

The goal is to enable the implementation of the Office Open XML formats by the widest set of tools and
platforms, fostering interoperability across office productivity applications and line-of-business systems, as well
as to support and strengthen document archival and preservation, all in a way that is fully compatible with the
large existing investments in Microsoft Office documents.

The following organizations have participated in the creation of this Standard and their contributions are
gratefully acknowledged:

Apple, Barclays Capital, BP, The British Library, Essilor, Intel, Microsoft, NextPage, Novell, Statoil, Toshiba, and
the United States Library of Congress

viii

Scope

. 1. Scope

2 This Standard defines Office Open XML's vocabularies and document representation and packaging. It also
3 specifies requirements for consumers and producers of Office Open XML.

10
11
12

13
14
15
16
17

18

21
22
23
24
25
26
27
28
29
30
31
32
33

Conformance

2. Conformance

The text in this Standard is divided into normative and informative categories. Unless documented otherwise,
any feature shall be implemented as specified by the normative text describing that feature in this Standard.
Text marked informative (using the mechanisms described in §7) is for information purposes only. Unless
stated otherwise, all text is normative.

III

Use of the word “shall” indicates required behavior.

Any behavior that is not explicitly specified by this Standard is implicitly unspecified (§4).

2.1 Goal

The goal of this clause is to define conformance, and to provide interoperability guidelines in a way that fosters
broad and innovative use of the Office Open XML file format, while maximizing interoperability and preserving
investment in existing files and applications (§4). By meeting this goal, this Standard benefits the following
audiences:

e Developers that design, implement, or maintain Office Open XML applications.

e Developers that interact programmatically with Office Open XML applications.

e Governmental or commercial entities that procure Office Open XML applications.

e Testing organizations that verify conformance of specific Office Open XML applications to this
Standard. (Note that this Standard does not include a test suite.)

e Educators and authors who teach about Office Open XML applications.

2.2 Issues

To achieve the above goal, the following issues need to be considered:

1. The application domain encompasses a range of possible consumers (§4) and producers (§4) so broad
that defining specific application behaviors would restrict innovation. For example, stipulating visual
layout would be inappropriate for a consumer that extracts data for machine consumption, or that
renders text in sound. Another example is that restricting capacity or precision runs the risk of diluting
the value of future advances in hardware.

2. Commonsense user expectations regarding the interpretation of an Office Open XML package (§4) play
such an important role in that package's value that a purely syntactic definition of conformance would
fail to effect a useful level of interoperability. For example, such a definition would admit an
application that reads a package, and then writes it in a manner that, though syntactically valid, differs
arbitrarily from the original.

3. Legitimate operations on a package include deliberate transformations, making blanket change
prohibitions inappropriate in the conformance definition. For example, collapsing spreadsheet
formulas to their calculated values, or converting complex presentation graphics to static bitmaps,

w N

w

11
12
13
14
15
16
17

20
21
22
23
24
25

26

27

28

29

30

31

32

33
34

Conformance

could be correct for an application whose published purpose is to perform those operations. Again,
commonsense user expectation makes the difference.

4. Existing files and applications exercise a broad range of formats and functionality that, if required by
the conformance definition, would add an impractical amount of bulk to the This Standard and could
inadvertently obligate new applications to implement a prohibitive amount of functionality. This issue
is caused by the breadth of currently available functionality and is compounded by the existence of
legacy formats.

2.3 What this Standard Specifies

To address the issues listed above, this Standard constrains both syntax and semantics, but it is not intended to
predefine application behavior. Therefore, it includes, among others, the following three types of information:

1. Schemas and an associated validation procedure for validating document syntax against those
schemas. (The validation procedure includes un-zipping, locating files, processing the extensibility
elements and attributes, and XML Schema validation.)

2. Additional syntax constraints in written form, wherever these constraints cannot feasibly be expressed
in the schema language.

3. Descriptions of element semantics. The semantics of an element refers to its intended interpretation
by a human being.

2.4 Document Conformance
Document conformance is purely syntactic; it involves only ltems 1 and 2 in §2.3 above.
e A conforming document shall conform to the schema (Item 1) and any additional syntax constraints
(Item 2).
e The document character set shall conform to the Unicode Standard and ISO/IEC 10646-1, with either
the UTF-8 or UTF-16 encoding form, as required by the XML 1.0 standard.

e Any XML element or attribute not explicitly included in this Standard shall use the extensibility
mechanisms described by Parts 4 and 5 of this Standard.

2.5 Application Conformance

Application conformance is purely syntactic; it also involves only Items 1 and 2 in §2.3 above.

e A conforming consumer shall not reject any conforming documents of the document type (§4)
expected by that application.
o A conforming producer shall be able to produce conforming documents.

2.6 Interoperability Guidelines

[Guidance: The following interoperability guidelines incorporate semantics (Item 3 in §2.3 above).

For the guidelines to be meaningful, a software application should be accompanied by publicly available
documentation that describes what subset of this Standard it supports. The documentation should highlight

Conformance

any behaviors that would, without that documentation, appear to violate the semantics of document
elements. Together, the application and documentation should satisfy the following conditions.

1. The application need not implement operations on all elements defined in this Standard. However, if it

10
11
12
13
14
15
16
17
18

does implement an operation on a given element, then that operation should use semantics for that
element that are consistent with this Standard.

If the application moves, adds, modifies, or removes element instances with the effect of altering
document semantics, it should declare the behavior in its documentation.

The following scenarios illustrate these guidelines.

A presentation editor that interprets the preset shape geometry “rect” as an ellipse does not observe
the first guideline because it implements “rect” but with incorrect semantics.

A batch spreadsheet processor that saves only computed values even if the originally consumed cells
contain formulas, may satisfy the first condition, but does not observe the second because the
editability of the formulas is part of the cells’ semantics. To observe the second guideline, its
documentation should describe the behavior.

A batch tool that reads a word-processing document and reverses the order of text characters in every
paragraph with “Title” style before saving it can be conforming even though this Standard does not
anticipate this behavior. This tool’s behavior would be to transform the title “Office Open XML” into
“LMX nepO eciffO”. Its documentation should declare its effect on such paragraphs. end guidance]

10

Normative References

3. Normative References

The following normative documents contain provisions, which, through reference in this text, constitute
provisions of this Standard. For dated references, subsequent amendments to, or revisions of, any of these
publications do not apply. However, parties to agreements based on this Standard are encouraged to
investigate the possibility of applying the most recent editions of the normative documents indicated below.
For undated references, the latest edition of the normative document referred to applies. Members of ISO and
IEC maintain registers of currently valid International Standards.

ISO/IEC 2382.1:1993, Information technology — Vocabulary — Part 1: Fundamental terms.

ISO/IEC 10646:2003 (all parts), Information technology — Universal Multiple-Octet Coded Character Set (UCS).

10
11

12

13
14
15

16
17

18
19
20
21
22
23

24
25
26

27
28

29
30

Definitions

4. Definitions

For the purposes of this Standard, the following definitions apply. Other terms are defined where they appear
in italic type or on the left side of a syntax rule. Terms explicitly defined in this Standard are not to be
presumed to refer implicitly to similar terms defined elsewhere. [Note: This part uses OPC-related terms,
which are defined in Part 2: "Open Packaging Conventions". end note]

application — A consumer or producer.
behavior — External appearance or action.

behavior, implementation-defined — Unspecified behavior where each implementation documents that
behavior, thereby promoting predictability and reproducibility within any given implementation. (This term is
sometimes called “application-specific behavior”.)

behavior, locale-specific — Behavior that depends on local conventions of nationality, culture, and language.

behavior, unspecified —Behavior where this Standard imposes no requirements. [Note: To add an extension,
an implementer must use the extensibility mechanisms described by this Standard rather than trying to do so
by giving meaning to otherwise unspecified behavior. end note]

document type — One of the three types of Office Open XML documents: Wordprocessing, Spreadsheet, and
Presentation, defined as follows:

e A document whose package-relationship item contains a relationship to a Main Document part
(811.3.10) is a document of type Wordprocessing.

e A document whose package-relationship item contains a relationship to a Workbook part (§12.3.23) is
a document of type Spreadsheet.

e A document whose package-relationship item contains a relationship to a Presentation part (§13.3.6)
is a document of type Presentation.

An Office Open XML document can contain one or more embedded Office Open XML packages (§15.2.10) with
each embedded package having any of the three document types. However, the presence of these embedded
packages does not change the type of the document.

DrawingML — A set of conventions for specifying the location and appearance of drawing elements in an
Office Open XML document.

extension — Any XML element or attribute not explicitly included in this Standard, but that uses the
extensibility mechanisms described by this Standard.

10
11

12

13
14

15

16

17
18

Definitions

Office Open XML document — A package containing ZIP items as required by, and satisfying Parts 1 and 4 of,
this Standard. A rendition of a data stream formatted using the wordprocessing, spreadsheet, or presentation
ML and its related MLs as described in this Standard. Such a document is represented as a package.

package— A ZIP archive that conforms to the Open Packaging Conventions specification defined in Part 2 of
this Standard.

package, embedded— A package that has been stored as the target of a valid Embedded Package relationship
(815.2.10) in an Office Open XML document

PresentationML — A set of conventions for representing an Office Open XML document of type Presentation.

relationship —The kind of connection between a source part and a target part in a package. Relationships
make the connections between parts directly discoverable without looking at the content in the parts, and
without altering the parts themselves. (See also Package Relationships.)

relationships part — A part containing an XML representation of relationships.

relationship, explicit — A relationship in which a resource is referenced from a source part’s XML using the
Id attribute of a Relationship tag.

relationship, implicit — A relationship that is not explicit.
SpreadsheetML — A set of conventions for representing an Office Open XML document of type Spreadsheet.

WordprocessingML — A set of conventions for representing an Office Open XML document of type
Wordprocessing.

2

10
11
12
13

5.

Notational Conventions

Notational Conventions

The following typographical conventions are used in this Standard:

1.

The first occurrence of a new term is written in italics. [Example: ... is considered normative. end
example]

A term defined as a basic definition is written in bold. [Example: behavior — External ... end example]
The name of an XML element is written using an Element style. [Example: The root element is
document. end example]

The name of an XML element attribute is written using an Attribute style. [Example: ... an id attribute.
end example)

An XML element attribute value is written using a constant-width style. [Example: ... value of
CommentReference. end example]

An XML element type name is written using a Type style. [Example: ... as values of the xsd:anyURI data
type. end example]

Acronyms and Abbreviations

6. Acronyms and Abbreviations

This clause is informative

The following acronyms and abbreviations are used throughout this Standard:
IEC — the International Electrotechnical Commission

ISO — the International Organization for Standardization

W3C — World Wide Web Consortium

End of informative text

10
11
12
13

14

15

16
17

18
19
20
21

General Description

7. General Description

This Standard is intended for use by implementers, academics, and application programmers. As such, it
contains a considerable amount of explanatory material that, strictly speaking, is not necessary in a formal
specification.

This Part is divided into the following subdivisions:

Front matter (clauses 1-7);
Overview (clause 8);

Main body (clauses 9-14);
Annexes

P wnNPE

Examples are provided to illustrate possible forms of the constructions described. References are used to refer
to related clauses. Notes are provided to give advice or guidance to implementers or programmers. Rationale
provides explanatory material as to why something is or is not in this Standard. Annexes provide additional
information or summarize the information contained in this Standard.

Clauses 1-5, 7, and 9-14 form a normative part of this Part; and the Introduction, clauses 6 and 8, as well as
the annexes, notes, examples, rationale, guidance, and the index, are informative.

Except for whole clauses or annexes that are identified as being informative, informative text that is contained
within normative text is indicated in the following ways:

1. [Example: code fragment, possibly with some narrative ... end example]
2. [Note: narrative ... end note]

3. [Rationale: narrative ... end rationale]

4. [Guidance: narrative ... end guidance]

10

10
11
12
13

14

15
16
17
18
19
20

21

22
23

24
25
26

27
28
29
30
31
32

Overview

8. Overview

This clause is informative.

This clause contains an overview of Office Open XML.

8.1 Packages and Parts

An Office Open XML document is represented as a series of related parts that are stored in a container called a
package. Information about the relationships between a package and its parts is stored in the package's
package-relationship ZIP item. Information about the relationships between two parts is stored in the part-
relationship ZIP item for the source part. A package is an ordinary ZIP archive, which contains that package's
content-type item, relationship items, and parts. (Packages are discussed further in Part 2.)

A WordprocessingML document contains a part for the body of the text; it might also contain a part for an
image referenced by that text, and parts defining document characteristics, styles, and fonts. A SpreadsheetML
document contains a separate part for each worksheet; it might also contain parts for images. A
PresentationML document contains a separate part for each slide.

8.2 Consumers and Producers

A tool that can read and understand a package is called a consumer, while one that can create a package is
called a producer. An application can be a consumer, a producer, or both. For example, when a word processor
creates a new document, it acts as a producer. When it is used to open an existing document for reading or
search purposes, it acts as a consumer. When it is used to open an existing document, edit it, and save the
result, it acts as both consumer and producer. Similar scenarios exist for spreadsheet and presentation
applications.

8.3 WordprocessingML

This subclause introduces the overall form of a WordprocessingML package, and identifies some of its main
element types. (See Part 3 for a more detailed introduction.)

A WordprocessingML package has a relationship of type officeDocument, which specifies the location of the
main part in the package. For a WordprocessingML document, that part contains the main text of the
document.

A WordprocessingML package’s main part starts with a word processing root element. That element contains a
body, which, in turn, contains one or more paragraphs (as well as tables, pictures, and the like). A paragraph
contains one or more runs, where a run is a container for one or more pieces of text having the same set of
properties. Like many collection element types, each run and paragraph can have associated with it a set of
properties. For example, a run might have the property bold, which indicates that run's text is to be displayed
in a bold typeface.

11

10

11
12
13

14
15
16
17
18
19

20
21

22
23
24
25
26

27

28
29

30
31

32
33
34

Overview

A WordprocessingML document is organized into sections, and the layout of a page on which the text appears
within a section is controlled by that section's properties. For example, each section can have its own headers
and footers.

One relationship from the document part specifies the document’s styles. A style defines a text display format.
A style can have properties, which can be applied to individual paragraphs or runs. Styles make runs more
compact by reducing the number of repeated definitions and properties, and the amount of work required to
make changes to the document's appearance. With styles, the appearance of all the pieces of text that share a
common style can be changed in one place, in that style's definition.

A series of paragraphs can have numbering applied to them via a numbering definition instance or a
numbering style.

Data in a WordprocessingML document can be organized in a table, a two-dimensional grid of cells organized
into rows and columns. Cells and whole tables can have associated properties. A cell can contain text and
paragraphs, for example.

Text within a WordprocessingMLdocument can be determined dynamically via the use of fields. Fields consist
of field instructions (the text that dictates the field's dynamic behavior) and the field result (the text resulting
from the dynamic calculation of the field instructions. For example, page numbers are represented as fields. A
hyperlink consists of two pieces of information: the hyperlink itself—the text the user will click—and the target
for the link. Potential targets include external files, e-mail addresses, web sites, and bookmarks within the
document itself.

A WordprocessingML document can also contain custom markup, user-defined semantics applied to arbitrary
document content.

A WordprocessingML document is not stored as one large body in a single part; instead, the elements that
implement certain groupings of functionality are stored in separate parts. For example, all footnotes in a
document are stored in one footnote part, while each section can have up to three different header parts and
three different footer parts, to support headers and footers on odd-numbered pages, even-numbered pages,
and the first page.

8.4 SpreadsheetML

This subclause introduces the overall form of a SpreadsheetML package, and identifies some of its main
element types. (See Part 3 for a more detailed introduction.)

A SpreadsheetML package has a relationship of type officeDocument, which specifies the location of the main
part in the package. For a SpreadsheetML document, that part contains the workbook definition.

A SpreadsheetML package’s main part starts with a spreadsheet root element. That element is a workbook,
which refers to one or more worksheets, which, in turn, contain the data. A worksheet is a two-dimensional
grid of cells that are organized into rows and columns.

12

10

11
12

13
14
15
16

17

18
19

20
21

22
23
24
25
26

27

28
29
30

31
32

Overview

The cell is the primary place in which data is stored and operated on. A cell can have a number of
characteristics, such as numeric, text, date, or time formatting; alignment; font; color; and a border. Each cell is
identified by a cell reference, a combination of its column and row headings.

Each horizontal set of cells in a worksheet is called a row, and each row has a heading numbered sequentially,
starting at 1. Each vertical set of cells in a worksheet is called a column, and each column has an alphabetic
heading named sequentially from A-Z, then AA—AZ, BA—BZ, and so on.

Instead of data, a cell can contain a formula, which is a recipe for calculating a value. Some formulas—called
functions—are predefined, while others are user-defined. Examples of predefined formulas are AVERAGE, MAX,
MIN, and SUM. A function takes one or more arguments on which it operates, producing a result. For example,
in the formula SUM(B1:B4), there is one argument, B1: B4, which is the range of cells B1-B4, inclusive.

Other features that a SpreadsheetML document can contain include the following: comments, hyperlinks,
images, and sorted and filtered tables.

A SpreadsheetML document is not stored as one large body in a single part; instead, the elements that
implement certain groupings of functionality are stored in separate parts. For example, all the data for a
worksheet is stored in that worksheet's part, all string literals from all worksheets are stored in a single shared
string part, and each worksheet having comments has its own comments part.

8.5 PresentationML

This subclause introduces the overall form of a PresentationML package, and identifies some of its main
element types. (See Part 3 for a more detailed introduction.)

A PresentationML package has a relationship of type officeDocument, which specifies the location of the main
part in the package. For a PresentationML document, that part contains the presentation definition.

A PresentationML package’s main part starts with a presentation root element. That element contains a
presentation, which, in turn, refers to a slide list, a slide master list, a notes master list, and a handout master
list. The slide list refers to all of the slides in the presentation; the slide master list refers to all of the slide
masters used in the presentation; the notes master contains information about the formatting of notes pages;
and the handout master describes how a handout looks.

A handout is a printed set of slides that can be handed out to an audience for future reference.

As well as text and graphics, each slide can contain comments and notes, can have a layout, and can be part of
one or more custom presentations. (A comment is an annotation intended for the person maintaining the
presentation slide deck. A note is a reminder or piece of text intended for the presenter or the audience.)

Other features that a PresentationML document can contain include the following: animation, audio, video,
and transitions between slides.

13

10

11

12
13
14

15
16
17

18
19

20
21
22

23
24

25
26

27
28
29
30
31
32
33
34

Overview

A PresentationML document is not stored as one large body in a single part; instead, the elements that
implement certain groupings of functionality are stored in separate parts. For example, all commentsin a
document are stored in one comment part while each slide has its own part.

8.6 Supporting MLs

This subclause introduces the set of markup languages used across package types. (See Part 3 for a more
detailed introduction.)

The three markup languages described above define the structure of a package that is either a document
(WordprocessingML), a spreadsheet (SpreadsheetML), or a presentation (PresentationML). However, there is
also a set of shared markup languages used for common elements such as charts, diagrams, and drawing
objects. These MLs are discussed below.

8.6.1 DrawingML

DrawingML specifies the location and appearance of drawing elements in a package. For example, these
elements could be, but are not limited to, shapes, pictures, and tables. The root element of a DrawingML XML
fragment specifies the presence of a drawing at this location in the document.

A shape is a geometric object such as a circle, square, or rectangle; a picture is an image presented inside the
document; and a table is a two-dimensional grid of cells organized into rows and columns. Cells and whole
tables can have associated properties. A cell can contain text, for example.

DrawingML also specifies the location and appearance of charts in a package. The root element of a chart part
is chart, and specifies the appearance of the chart at this location in the document.

In addition, DrawingML specifies package-wide appearance characteristics, such as the package's theme. The
theme of a document specifies the color scheme, fonts, and effects, which can be referenced by parts of the
document—such as text, drawings, charts, and diagrams—in order to create a consistent visual presentation.

A chart is a presentation of data in a graphical fashion, such as a pie chart, bar chart, line chart, in order to
make trends and exceptions in the data more visually apparent.

DrawingML also specifies the location and appearance of diagrams in a document. Together, the following four
parts define a diagram:

e The data part (§14.2.4) specifies individual items of information presented in the diagram. Typically,
each piece is a simple line of text, but depending on the diagram, an item of data might also be an
image.

e The layout part (§14.2.5) specifies how the data and shapes are laid out to create the resulting
diagram.

e The colors part (§14.2.3) specifies the color which is applied to each individual shape in the diagram.

e The styles part (§14.2.6) defines how each individual shape in the diagram maps to the document's
theme.

14

10

11
12

13

14

15

16

17
18
19

20
21
22
23
24

25
26
27

28

29
30

31

32
33

34

Overview

8.6.2 VML

VML specifies the appearance and content of certain shapes in a document. This is used for shapes such as text
boxes, as well as shapes which must be stored to maintain compatibility with earlier versions of
consumer/producer applications.

[Note: The VML format is a legacy format originally introduced with Office 2000 and is included and fully
defined in this Standard for backwards compatibility reasons. The DrawingML format is a newer and richer
format created with the goal of eventually replacing any uses of VML in the Office Open XML formats. VML
should be considered a deprecated format included in Office Open XML for legacy reasons only and new
applications that need a file format for drawings are strongly encouraged to use preferentially DrawingML. end
note]

A shape definition is typically specified using two elements: shapeData, which stores information about the
shape, and shape, which stores the shape definition and appearance directly.

8.6.3 Custom XML Data Properties

Custom XML Data properties allow the ability to store arbitrary XML in a package, along with schema
information used by that XML.

8.6.4 File Properties

The core file properties of a package enable users to discover, get, and set common sets of properties from
within that package, regardless of whether it's a WordprocessingML, SpreadsheetML, or PresentationML
package, or another use of OPC. Such properties include creator name, creation date, title, and description.

Extended file properties are specific to Office Open XML packages. For example, for a WordprocessingML
package, these properties include the number of characters, words, lines, paragraphs, and pages in the
document. For a SpreadsheetML package, these properties include worksheet titles. For a PresentationML
package, these properties include presentation format, the number of slides, the number of notes, and
whether or not any slides are hidden.

Custom file properties are defined by the user. Examples include the name of the client for whom the
document was prepared, a date/time on which some event happened, a document number, or some Boolean
status flag. Each custom file property has a value, and that value has a type.

8.6.5 Math

Math specifies the structure and appearance of equations in a document; it is specified with a root element of
math.

8.6.6 Bibliography

Bibliography specifies the structure for all references stored within a document, for use in citations or a
bibliography.

End of informative text.

15

10

11
12
13
14
15

16

17
18
19

20

21
22

23

24

25

26

27
28
29
30

Packages

9. Packages

An Office Open XML document is stored as a package, whose format is defined by Part 2: "Open Packaging
Conventions". This subclause contains information regarding Office Open XML's use of OPC.

Throughout this Standard, the Open Packaging Conventions are referred to by their abbreviated name, OPC.

9.1 Constraints on Office Open XML's Use of OPC

While the OPC specification is designed for the representation of Office Open XML documents, it could also
support a much broader range of applications. As a result, the use of some OPC features is restricted within
Office Open XML documents. These additional requirements are discussed in the following subordinate
subclauses. Any requirement not mentioned here is inherited from the OPC specification.

9.1.1 Part Names

An Office Open XML part name shall contain only ASCII characters, in non-escaped or escaped form. The
following ASCII characters are permitted in non-escaped form: "!", "$", "%", "&", "™, "(",")", "*", "+", ",", "-",
"." the decimal digits "0"-"9", ":", ";", "=", "@", the Latin alphabetic characters "A"-"Z" and "a"-"z", " ",

and "~". All other ASCII characters are permitted only when escaped as an encoded triplet of the form "%HH",
where H is a hexadecimal digit.]

9.1.2 Part Addressing

Parts in an Office Open XML package targeted by relationships are addressed in relationship markup through
part names. External document resources targeted by a relationship can be addressed using both relative and
absolute references.

9.1.3 Fragments

Fragment identifiers are supported as part of all Office Open XML external relationship targets and some Office
Open XML internal relationship targets.

9.1.4 Physical Packages

Each Office Open XML document is implemented as a ZIP archive.

9.1.5 Interleaving

Office Open XML document parts shall be arranged contiguously in a package as defined by simple ordering.
Parts within an Office Open XML package shall not be interleaved. All parts shall be stored as complete ZIP
items, and the interleaving functionality defined in Part 2 of this Standard shall not be used. [Note: Part 2 of

this Standard specifies a method for interleaving parts, which is a very useful capability for stream processing.
In order to simplify initial implementations of the Standard, interleaving is not used in this current version of

16

10

11
12

13
14

15

16

17
18
19

20

21
22

23

24

25
26

27

28
29
30

31
32

Packages

the Office Open XML formats but it may be used in further versions of the standard or by other formats that
leverage OPC. end note]

9.1.6 Unknown Parts

With the exception of relationship parts, all other parts in an Office Open XML document that are not the
target of a valid relationship are considered unknown parts. Unknown parts shall be ignored on document
consumption and can, but need not, be discarded on production.

9.1.7 Trash Items

Trash items represent parts that have been discarded or are no longer in use. Trash items shall not conform to
OPC part naming guidelines as defined in Part 2 and shall not be associated with a content type. All trash
items shall follow the naming scheme: [trash]/hhhh.dat where h represents a hexadecimal value.

[Example: A package has two parts that must be updated in-place but both parts have grown beyond their
growth hints. The newer updated parts are added as new ZIP items while the original parts are renamed to:

[trash]/0000.dat
[trash]/0001.dat

end example]

9.1.8 Invalid Parts

ZIP archive items that do not conform to OPC part naming guidelines or are not associated with a content type
shall not be allowed in an Office Open XML document, with the exception of items specifically defined by
Part 2: “Open Packaging Conventions” and trash items.

9.1.9 Unknown Relationships

All relationships not defined within this Standard are considered unknown relationships. Unknown
relationships are valid within an Office Open XML document provided that they conform to relationship
markup guidelines as defined by the OPC specification. Specifically:

e Conforming consumers shall not fail to load a document containing unknown relationships.
e Conforming producers are encouraged to roundtrip and preserve unknown relationships and their
target parts.

9.2 Relationships in Office Open XML

In OPC, relationships describe references from parts to other internal resources in the package or to external
resources. They represent the type of connection between a source part and a target resource, and make the
connection directly discoverable without looking at the part contents, so they are quick to resolve.

The same ZIP item can be the target of multiple relationships. [Note: Having multiple paths to a target can
make access to that target more convenient. end note]

17

10

11
12

13

14

15
16
17
18
19
20

21
22
23

24
25
26

27

29
30
31
32

33

Packages

Office Open XML imposes constraints on relationships, described in subsequent clauses of this part.
Relationships in Office Open XML are either explicit or implicit.

For an explicit relationship, a resource is referenced from a source part’s XML using the Id attribute of a
Relationship tag. [Example: A document part can have a relationship to a hyperlink only if that hyperlink's
Relationship element’s Id attribute value is referenced explicitly by the document part’s XML. end example]
[Note: Because this mechanism is used generically across multiple tag types, explicit relationships can be
extracted from an Office Open XML document without prior knowledge of tag semantics. end note]. Certain
relationships shall be explicit.. All other relationships are implicit [Note: The syntax for specifying an implicit
relationship varies among tag types. end note]. Relationships that are required or permitted, and restrictions
on those relationships are described in §10-15 of this Part.

[Example: Consider a WordprocessingML document that contains the following footnote sentence fragment,
"... produced by Ecma’ (http://www.ecma-international.org/).", which contains a footnote and a hyperlink to a
web site. The relationship from a source to a footnote is implicit while that to a hyperlink is explicit.

The Main Document part’s relationship file contains the following:

<Relationships ..>
<Relationship Id="rId5" Type="../footnotes”
Target="footnotes.xml"/>
<Relationship Id="rId7" Type="../hyperlink"
Target="http://www.ecma-international.org/" TargetMode="External"/>
</Relationships>

All footnotes for a WordprocessingML document are contained in the same Footnotes part. Let’s look at how
the Main Document refers to the footnote. At the point at which the footnote reference is inserted, the
following XML is present:

<W:r>
<w:footnoteReference w:id="2"/>
</W:ir>

The w:id=“2" refers to the footnote with id=2 in the Footnotes part, the relevant piece of which is:
<w:footnote w:id="2">

Ecma is an international standards development organization (SDO).

</w:footnote>

In the case of the hyperlink, the main document part makes an explicit reference to this relationship when it
refers to the hyperlink, by using the following:

18

10
11

12
13

14
15
16

17

18
19
20

Packages

<w:hyperlink r:id="rId7" w:history="1">

</w:hyperlink>

The important distinction here is that there is no explicit reference to a relationship ID designating the
Footnotes part. The reference to the footnote with id=2 is “understood” to be in the Footnotes part that must
always exist if there are any footnotes in the document. end example]

[Example: The following figure shows how the source, relationship item, and the target relate to each other for
implicit and explicit relationships, respectively. The target does not have to be a file, however.

The dots correspond to attributes of relevant elements. Where one attribute refers to a piece in another part,
this is indicated by arrows. Solid arrows indicate that the value of the source directly corresponds to the value
at the target (for instance, id=rId4 in the source part corresponds to id=rld4 in the relationship item).

Dotted arrows indicate that the value of the source only implicit corresponds to the value of the target (for
instance, "footnoteReference" in the source indicates the type "footnotes" in the relationship item).

The main difference between the two types of relationship is that for implicit relationships, the id of the
reference refers to an element with the same id in the target part, whereas for explicit relationships, the id
refers to a relationship with the same id in the relationship item.

Both relationship types use the target URI of the relationship in the relationship item to locate the target.

For explicit relationships, the id in the source XML links to a relationship item with a direct explicit reference to
the target. For implicit relationships, the relationship item is implied by the containing tag (e.g., footnote) and
the id in the source XML is used to locate the correct element within the implied target.

19

2

3

Implicit relationship

77777

relationship
ftem

id
{or similar)

end example)

Packages

Explicit relationship

77777777777

id
{or similar)| oo i
reiationship Eﬁg%et
item
target

[Example: The following figure shows the implicit relationship for the footnote example described earlier.

20

2

3

1+ «<w:footnoteReference ¢
wveiid ="'2""/ > !

i <Relationships...»
! <Relationship
: Id="rlds”
|
i

Type ="./relationships/footnotes”

refationship item 7

Footnotes.xmil

end example)

Example Implicit relationship

[Example: The following figure shows an explicit relationship.

Packages

21

Packages

Example Explicit relationship

<wipict> |
<w:imagedata]
I
1
1

riid="rid4"/>

| <Relationships...>

\ =Relationship

; » Id="rId4"”

i Type ="../relationships/image”
i

I

Target ="imgl.jpg"”/>

|
1
I
1
1
1
:
i 2 I
=/Relationships> |
1

relationship item 7

imgl. jpg

target 7

2 end example]

22

10
11

12

13
14
15
16
17

18

19

20
21
22
23
24

Markup Compatibility and Extensibility

10. Markup Compatibility and Extensibility

Office Open XML documents are designed to allow for innovation by extending their capabilities via a scheme
defined by Part 5: "Markup Compatibility and Extensibility". This subclause contains information regarding
Office Open XML's use of the Markup Compatibility constructs.

10.1 Constraints on Office Open XML's Use of Markup Compatibility and
Extensibility

While the Markup Compatibility and Extensibility specification is designed for and used by Office Open XML
documents, it could also be used to support a much broader range of applications. As a result, the use of some
Markup Compatibility and Extensibility features is restricted within Office Open XML documents. These
additional requirements are discussed in the following subordinate subclauses. Any requirement not
mentioned here is inherited from the Markup Compatibility and Extensibility specification.

10.1.1 PreserveElements and PreserveAttributes

The PreserveElements and PreserveAttributes elements, as defined in Part 5, allow a markup language to
specify the conditions under which extensions should be round-tripped, even when their contents are edited.
Within the context of the markup languages explicitly defined by this Standard, no such conditions are
specified, and therefore applications are not obliged to support these hints at any point in an Office Open XML
document. Instead, the well-defined extensibility constructs defined below should be used.

All other constructs defined in Part 5 shall be supported.

10.1.2 Office Open XML Native Extensibility Constructs

Clause 12 of Part 5 specifies the ability for a markup language to define additional constructs for extensibility
of a specific markup language. Within the context of Office Open XML documents, the extLst element(s)
defined in individual markup languages shall allow the round-tripping of all unknown content regardless of the
state of the PreserveElements and PreserveAttributes elements. See Part 4 for additional information on the
valid use of the extLst construct.

23

10
11

12
13

14
15
16

17
18
19
20

21
22

23
24

25
26
27

28
29
30

WordprocessingML

11. WordprocessingML

This clause contains specifications for relationship items and parts that are specific to WordprocessingML.
Parts that can occur in a WordprocessingML document, but are not WordprocessingML-specific, are specified
in §15.2. Unless stated explicitly, all references to relationship items, content-type items, and parts in this
clause refer to WordprocessingML ZIP items.

11.1 Glossary of WordprocessingML-Specific Terms

The following terms are used in the context of a WordprocessingML document:

comment — A note that an author or reviewer attaches to a piece of text in a document. Although a consumer
may chose to display comments, they are not considered part of the body of the document. A comment
includes the text of the note, the comment author's name and initials, and date of creation, among other
things.

document setting — A reusable element in a template. [Note: Such elements include boilerplate text, cover
pages, equations, footers, headers, tables, text boxes, and watermarks. end note]

glossary document — An additional WordprocessingML document story used to store reusable fragments of
rich WordprocessingML content. It is called the glossary document as this story contains one or more
fragments that can be indexed and extracted by name, like items in a glossary.

master document — A document that is the parent of one or more subdocuments. [Note: A master document
can be used to manage a multipart document, such as a book having several chapters. In such as case, the
master document might contain the cover page, front matter, table of contents, and cross-reference index,
while each chapter and appendix resides in its own subdocument. end note]

section — A portion of a document in which certain page formatting options can be set. [Note: A new section
is created to change such properties as line numbering, number of columns, or headers and footers. end note]

subdocument — A piece of a master document. [Note: A chapter or appendix might be a subdocument in a
book. end note]

supplementary document storage location — A part within a WordprocessingML document in which
fragments of WordprocessingML content can be stored separate from the printed page. See also glossary
document

template — A document that is a pattern for creating other documents. A template can contain text,
formatting, and graphics, among other things, such that documents based on it automatically have access to
these elements.

24

10

11
12

13
14

15
16
17
18
19
20
21
22

23
24

25
26
27
28
29
30

31
32

WordprocessingML

11.2 Package Structure

A WordprocessingML package shall contain a package-relationship item and a content-type item. The package-
relationship item shall contain implicit relationships with targets of the following type:

e One Main Document part (§11.3.10)
The package-relationship item is permitted to contain implicit relationships with targets of the following type:

e Digital Signature Origin (§15.2.6)

e File Property parts (§15.2.11) (Application-Defined File Properties, Core File Properties, and Custom
File Properties), as appropriate.

e Thumbnail (§15.2.14).

The required and optional relationships between parts are defined in §11.3 and its subordinate clauses.

[Example: The following package represents the minimal conformant WordprocessingML package as defined
by this Standard:

First, the content type for relationship parts and the Main Document part (the only required part) must be
defined (physically located at /[Content_Types].xml in the package):

<Types xmlns="..">
<Default Extension="rels"
ContentType="application/vnd.openxmlformats-
package.relationships+xml"/>
<Override PartName="/document.xml"
ContentType="application/vnd.openxmlformats-
officedocument.wordprocessingml.document.main+xml"/>
</Types>

Next, the single required relationship (the package-level relationship to the Main Document part) must be
defined (physically located at /_rels/.rels in the package):

<Relationships xmlns="..">
<Relationship Id="rId1"
Type="http://schemas.openxmlformats.org/officeDocument/2006/
relationships/officeDocument™
Target="document.xml"/>
</Relationships>

Finally, the minimum content for the Main Document part must be defined (physically located at
/document.xml in the package):

25

WordprocessingML

1 <w:document xmlns:w=".">
2 <w:body>

3 <w:p/>

4 </w:body>

5 </w:document>

6 endexample)

7 [Example: Consider a WordprocessingML document that is an early draft of this Standard. Here’s an example
g8 of the hierarchical folder structure that might be used for the ZIP items in the package for that document. As
9 shown, one part, Main Document (stored in the ZIP item /word/document.xml), has its own relationship item:

10 /[Content_Types].xml Content-type item

11 /_rels/.rels Package-relationship item
12 /docProps/app.xml Application-Defined File Properties part
13 /docProps/core.xml Core File Properties part
14 /word/document.xml Main Document part

15 /word/_rels/document.xml.rels Part-relationship item

16 /word/comments.xml Comment part

17 /word/endnotes.xml Endnotes part

18 /word/fontTable.xml Font Table part

19 /word/footerl.xml Footer parts

20 /word/footer2.xml

21 /word/footer3.xml

22 /word/footer4.xml

23 /word/footnotes.xml Footnotes part

24 /word/headerl.xml Header parts

25 /word/header2.xml

26 /word/header3.xml

27 /word/header4.xml

28 /word/header5.xml

29 /word/header6.xml

30 /word/numbering.xml Numbering Definitions part
31 /word/settings.xml Document Settings part

32 /word/styles.xml Style Definitions part

33 /word/theme/themel.xml Theme part

34 The package-relationship item contains the following:

35 <Relationships xmlns="..">

36 <Relationship Id="rId3"

37 Type="http://../extended-properties"” Target="docProps/app.xml"/>
38 <Relationship Id="rId2"

39 Type="http://../core-properties" Target="docProps/core.xml"/>

26

<Relationship Id="rId1"

Type="http://../officeDocument"” Target="word/document.xml"/>

</Relationships>

end example)

11.3 Part Summary

WordprocessingML

The subclauses subordinate to this one describe in detail each of the part types specific to WordprocessingML.

[Note: For convenience, information from those subclauses is summarized in the following table:

Part Relationship Target of Root Element Ref.
Alternative Format Comments, Endnotes, Footer, Not applicable §11.3.1
Import Footnotes, Header, or Main
Document

Comments Glossary Document or Main comments §11.3.2
Document

Document Settings Glossary Document or Main settings §11.3.3
Document

Endnotes Glossary Document or Main endnotes §11.3.4
Document

Font Table Glossary Document or Main fonts §11.3.5
Document

Footer Glossary Document or Main ftr §11.3.6
Document

Footnotes Glossary Document or Main footnotes §11.3.7
Document

Glossary Document Main Document glossaryDocument §11.3.8

Header Glossary Document or Main hdr §11.3.9
Document

Main Document WordprocessingML package document §11.3.10

Numbering Glossary Document or Main numbering §11.3.11

Definitions Document

Style Definitions Glossary Document or Main styles §11.3.12
Document

Web Settings Glossary Document or Main webSettings §11.3.13
Document

end note]

27

1

10
11
12
13
14

15
16
17

18
19

20
21
22
23

24
25

WordprocessingML

11.3.1 Alternative Format Import Part

Content Type: | Any content, support for which is application-defined.

[Note: Some examples of formats which might be supported include:
e Text = application/txt

RTF = application/rtf

e HTML = application/html

e XML = application/xml

end note]
Root not applicable
Namespace:
Source http://schemas.openxmlformats.org/officeDocument/2006/relationships/aFChunk
Relationship:

An alternative format import part allows content specified in an alternate format (HTML, MHTML, RTF, earlier
versions of WordprocessingML, or plain text) to be embedded directly in a WordprocessingML document in
order to allow that content to be migrated to the WordprocessingML format.

Any document part that permits a p element can also contain an altChunk element, whose id attribute refers
to a relationship. That relationship shall target a part within the package, which contains the content to be
imported into this WordprocessingML document.

A package is permitted to contain zero or more Alternative Format Import parts, each of which shall have a
corresponding alternate format file that is the target of an explicit relationship from a Comments (§11.3.2),
Endnotes (§11.3.4), Footer (§11.3.6), Footnotes (§11.3.7), Header (§11.3.9), or Main Document (§11.3.10) part.
This relationship shall be explicitly referenced using its relationship ID in the source part using the appropriate
XML syntax (i.e.; in the id attribute on the altChunk element), and the presence of this relationship without
such a reference shall be considered invalid.

A WordprocessingML consumer shall treat the contents of such legacy text files as if they were formatted
using equivalent WordprocessingML, and if that consumer is also a WordprocessingML producer, it shall emit
the legacy text in WordprocessingML format.

This Standard does not specify how one might create a WordprocessingML package that contains Alternative
Format Import relationships and altChunk elements.

However, a conforming producer shall not create a WordprocessingML package that contains Alternative
Format Import relationships and elements. [Note: The Alternative Format Import machinery provides a one-
time conversion facility. A producer could have an extension that allows it to generate a package containing
these relationships and elements, yet when run in conforming mode, does not do so. end note]

[Example: The following Main Document part-relationship item contains a relationship to an Alternative
Format Import part:

28

(=}

10
11
12

14
15
16

17
18

19
20

21

22

23

24
25
26

27
28

WordprocessingML

<Relationships xmlns="..">
<Relationship Id="rId5"
Type="http://../aFChunk" Target="Demo.html"
TargetMode="Internal"/>
</Relationships>

The Main Document part contains the following XML fragment:

<w:body>

<w:p/>
<w:altChunk r:id="rId5"/>
w:p/>

</w:body>

which results in the entire contents of Demo.html being converted and brought into the document at that
point (assuming that the content type of Demo.html is supported by the application consuming this
WordprocessingML file). end example]

An Alternative Format Import part shall be located within the package containing the source relationship
(expressed syntactically, the TargetMode attribute of the Relationship element shall be Internal).

An Alternative Format Import part shall not have any explicit or implicit relationships to parts defined by this
Standard.

11.3.2 Comments Part

Content Type: | application/vnd.openxmlformats-officedocument.wordprocessingml.comments+xml
Root http://schemas.openxmlformats.org/wordprocessingml|/2006/main

Namespace:

Source http://schemas.openxmlformats.org/officeDocument/2006/relationships/comments
Relationship:

An instance of this part type contains the information about each comment in the document.

A package shall contain no more than two Comments parts. If it exists, one instance of that part shall be the
target of an implicit relationship from the Main Document (§11.3.10) part, and the other shall be the target of
an implicit relationship from the Glossary Document (§11.3.8) part.

[Example: The following Main Document part-relationship item contains a relationship to the Contents part,
which is stored as the ZIP item comment.xml:

29

A W N

10
11
12
13

14

15

16
17

18
19
20
21
22
23
24
25
26

27

28
29

30

WordprocessingML

<Relationships xmlns="..">
<Relationship Id="rId93"
Type="http://../comments" Target="comments.xml"/>
</Relationships>

end example]
The root element for a Comment part shall be comments.
[Example:

<W:comments .. >
<W:comment>

</w:comment>

</w:comments>
end example]
The XML markup for a comment in a Main Document part uses the commentReference element.

[Example: Consider the case in which the Main Document part contains the text “... in the Standard.", and
there is an comment inserted immediately after the period:

W:ip .o

<W:r>
<w:t>... in the Standard.</w:t>
</wir>
<W:r>
<w:commentReference w:id="1"/>
</wir>
</wip>

end example)

Each comment has a corresponding comment element in the Comments part, which contains the text of the
comment.

[Example: The text of the comment is "This is my comment.":

30

0 N o b~ W N

10
11

12

13
14
15
16
17
18
19
20
21

22

23

24

25

26

27
28
29

WordprocessingML

<w:comments xmlns:w="..
<w:comment w:id="1">
<w:p>
<W:r>
<w:t>This is my comment.</w:t>
</w:p>
</w:comment>
</w:comments>

end example]

A Comments part shall be located within the package containing the source relationship (expressed
syntactically, the TargetMode attribute of the Relationship element shall be Internal).

A Comments part is permitted to contain explicit relationships to the following parts defined by this Standard:

e Alternative Format Import (§11.3.1)

e Chart (§14.2.1)

e Diagrams: Diagram Colors(§14.2.3), Diagram Data(§14.2.4), Diagram Layout Definition(§14.2.5) and
Diagram Styles (§14.2.6)

e Embedded Control Persistence (§15.2.8)

e Embedded Object (§15.2.9)

e Embedded Package (§15.2.10)

e Hyperlinks (§15.3)

e Images (§15.2.13)

e Video (§15.2.16)

A Comments part shall not have any implicit or explicit relationships to any other part defined by this Standard.

11.3.3 Document Settings Part

Content Type: | application/vnd.openxmlformats-officedocument.wordprocessingml.settings+xml
Root http://schemas.openxmlformats.org/wordprocessingml/2006/main

Namespace:

Source http://schemas.openxmliformats.org/officeDocument/2006/relationships/settings
Relationship:

An instance of this part type contains all the document's properties.

A package shall contain no more than two Document Settings parts. If it exists, one instance of that part shall
be the target of an implicit relationship from the Main Document (§11.3.10) part, and the other shall be the
target of an implicit relationship from the Glossary Document (§11.3.8) part.

31

o U A~ W

10
11
12
13
14
15
16
17
18
19
20
21
22

24

25
26

27

28

29

30

31

32

33
34

WordprocessingML

[Example: The following Main Document part-relationship item contains a relationship to a Document Settings

part, which is stored in the ZIP item documentPropertiesl.xml:

<Relationships xmlns="..">
<Relationship Id="rId4"
Type="http://../settings" Target="settings.xml"/>
</Relationships>

end example)
The root element for a part of this content type shall be settings.
[Example:

<w:settings .. >

<w:defaultTabStop w:val="360"/>
<w:footnotePr>

</w:footnotePr>
<w:endnotePr>

</w:endnotePr>
<W:rsids>

</w:rsids>

</w:settings>
end example]

A Document Settings part shall be located within the package containing the source relationship (expressed
syntactically, the TargetMode attribute of the Relationship element shall be Internal).

A Document Settings part is permitted to contain explicit relationships to the following parts defined by this
Standard:

e Document Template (§11.4)

e Mail Merge Data Source (§11.7)

e Mail Merge Header Data Source (§11.8)
e XSL Transformation (§11.9)

A Document Settings part shall not have any implicit or explicit relationships to any other part defined by this

Standard.

32

10
11
12

13

14

15

16
17
18
19
20
21
22
23

24

25

26
27

WordprocessingML

11.3.4 Endnotes Part

Content Type: | application/vnd.openxmlformats-officedocument.wordprocessingml.endnotes+xml
Root http://schemas.openxmliformats.org/wordprocessingml/2006/main

Namespace:

Source http://schemas.openxmliformats.org/officeDocument/2006/relationships/endnotes
Relationship:

An instance of this part type contains all the endnotes for the document.

A package shall contain no more than two Endnotes parts. If it exists, one instance of that part shall be the
target of an implicit relationship from the Main Document (§11.3.10) part, and the other shall be the target of
an implicit relationship from the Glossary Document (§11.3.8) part.

[Example: The following Main Document part-relationship item contains a relationship to the Endnotes part,
which is stored as the ZIP item endnotes.xml:

<Relationships xmlns="..">
<Relationship Id="rId6"
Type="http://../endnotes"” Target="endnotes.xml"/>
</Relationships>

end example)
The root element for an Endnotes part shall be endnotes.
[Example:

<w:endnotes xmlns:w="." ..>
<w:endnote ..>

</w:endnote>
<w:endnote ..>

</w:endnote>
</w:endnotes>

end example]
The XML markup for an endnote in a Main Document part uses the endnoteReference element.

[Example: Consider the case in which the Main Document part contains the text "... in the Standard.", and
there is an endnote inserted immediately after the period:

33

O 00 N OO s~ W N e

S
N L, O

13

14
15

16
17

18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37

WordprocessingML

<W:p .>

<W:r>
<w:t>... in the Standard.</w:t>
</wir>
<W:r>
<W:rPr>
<w:rStyle w:val="EndnoteReference"/>
</W:rPr>
<w:endnoteReference w:id="5"/>
</wir>
</w:ip>

end example]

Each endnote has a corresponding endnote element in the Endnotes part, which contains the text of the
endnote, and the endnoteRef element.

[Example: The text of the endnote is "This can be downloaded from http://www.aabbcc.com/index.html."
where "http://www.aabbcc.com/index.html" is marked as a hyperlink:

<w:endnotes xmlns:w="..">
<w:endnote w:id="5">
<W:p>
<W:r>
<W:rPr>
<w:rStyle w:val="EndnoteReference"/>
</w:rPr>
<w:endnoteRef/>
</wir>
<W:r>
<w:t xml:space="preserve"> This can be downloaded from </w:t>
</wir>
<w:hyperlink r:id="rId2">
<W:r>
<W:rPr>
<w:rStyle w:val="Hyperlink"/>
</w:rPr>
<w:t>http://www.aabbcc.com/index.html</w:t>
</w:r>
</w:hyperlink>

34

v A W N

10

11

12

13

14

15

16

17

18

19

20

21

22

23
24
25

26
27
28

29
30

WordprocessingML

<W:r>
<KwW:t>.</wit>
</w:p>
</w:endnote>
</w:endnotes>

end example)

An Endnotes part shall be located within the package containing the source relationship (expressed
syntactically, the TargetMode attribute of the Relationship element shall be Internal).

An Endnotes part is permitted to contain explicit relationships to the following parts defined by this Standard:

e Alternative Format Import (§11.3.1)

e Chart (§14.2.1)

e Diagrams: Diagram Colors(§14.2.3), Diagram Data(§14.2.4), Diagram Layout Definition(§14.2.5) and
Diagram Styles (§14.2.6)

e Embedded Control Persistence (§15.2.8)

e Embedded Object (§15.2.9)

e Embedded Package (§15.2.10)

e Hyperlinks (§15.3)

e Images (§15.2.13)

e Video (§15.2.16)

An Endnotes part shall not have any implicit or explicit relationships to any other part defined by this Standard.

11.3.5 Font Table Part

Content Type: | application/vnd.openxmlformats-officedocument.wordprocessingml.fontTable+xml
Root http://schemas.openxmlformats.org/wordprocessingml/2006/main

Namespace:

Source http://schemas.openxmlformats.org/officeDocument/2006/relationships/fontTable
Relationship:

An instance of this part type contains information about each of the fonts used by content in the document.
When a consumer reads a WordprocessingML document, it shall use this information to determine which fonts
to use to display the document when the specified fonts are not available on the consumer’s system.

A package shall contain no more than two Font Table parts. If it exists, one instance of that part shall be the
target of an implicit relationship in the part-relationship item for the Main Document (§11.3.10) part, and the
other instance shall be the target of an implicit relationship from the Glossary Document (§11.3.8) part.

[Example: The following Main Document part-relationship item contains a relationship to the Font Table part,
which is stored as the ZIP item fontTable.xml:

35

o

10
11
12
13
14
15
16

18

19
20

21

22

23

24

25

26

27
28
29

WordprocessingML

<Relationships xmlns="..">
<Relationship Id="rId1"
Type="http://../fontTable" Target="fontTable.xml"/>
</Relationships>

end example]
The root element for a part of this content type shall be fonts.
[Example:

<w:fonts .. >
<w:font w:name="Calibri">
<w:panosel w:val="020F0502020204030204" />
<w:charset w:val="00"/>
<w:family w:val="swiss"/>
<w:pitch w:val="variable"/>
<W:sig w:usb@="A00OO2EF" w:usbl="4000207B" w:usb2="00000000"
w:usb3="00000000" w:csbO="0000009F" w:csbl="00000000"/>
</w:font>
</w:fonts>

end example]

A Font Table part shall be located within the package containing the source relationship (expressed
syntactically, the TargetMode attribute of the Relationship element shall be Internal).

A Font Table part is permitted to contain explicit relationships to the following parts defined by this Standard:
e Fonts (§15.2.12)
A Font Table part shall not have any implicit or explicit relationships to any other part defined by this Standard.

11.3.6 Footer Part

Content Type: | application/vnd.openxmlformats-officedocument.wordprocessingml.footer+xml
Root http://schemas.openxmlformats.org/wordprocessingml|/2006/main

Namespace:

Source http://schemas.openxmlformats.org/officeDocument/2006/relationships/footer
Relationship:

An instance of this part type contains the information about a footer displayed for one or more sections.

A package is permitted to contain zero or one Footer part for each kind of footer (first page, odd page, or even
page) in each section of the document. Each Footer part shall be the target of an explicit relationship in the
part-relationship item for the Main Document (§11.3.10) part, or the Glossary Document (§11.3.8) part.

36

o U A~ W

10
11
12

13

14
15

16
17

WordprocessingML

[Example: The Main Document part-relationship item contains one relationship, for the odd footer part, which
is stored as the ZIP item footer3.xml:

<Relationships xmlns="..">
<Relationship Id="rIdo1l"
Type="http://../footer" Target="footer3.xml"/>
</Relationships>

end example)
The root element for a Footer part type shall be ftr.

[Example:

<w:ftr xmlns:w="." ..>

</w:ftr>
end example]

The XML markup for a footer in a section of a Main Document part involves the footerReference element in
that section's sectPr element which explicitly references the relationship for the header.

[Example: Consider the case in which a section in the Main Document part contains odd and even headers, and
an odd footer:

<w:document xmlns:w="..">

<w:sectPr>
<w:footerReference w:val="rId89" w:type="default"/>
<w:footerReference w:val="rId90" w:type="even"/>
<w:footerReference w:val="rId91" w:type="first"/>
<w:type w:val="oddPage"/>
<w:pgSz w:w="11909" w:h="16834" w:code="9"/>
<w:pgMar w:top="1440" w:right="1152" w:bottom="1440"

w:left="1152" w:header="720" w:footer="720" w:gutter="0"/>

<w:1nNumType w:countBy="1"/>
<w:pgNumType w:numFmt="lowerRoman"/>
<w:cols w:space="720"/>

</w:sectPr>

</w:document>

end example]

Each footer has a corresponding ftr element in a Footer part, which contains the text of the footer.

37

O 00 N o U A~ W

10
11
12
13
14
15
16
17

18

19
20

21

22

23

24

25

26

27

28

29

30

31

32

33

WordprocessingML

[Example: Here is the odd footer corresponding to the example above. It has the page number centered and
displayed using lowercase Roman numerals (as set by the pgNumType element above):

<w:ftr xmlns:w=".">
<w:p>
<W:pPr>
<w:pStyle w:val="Centered"/>
</w:pPr>
<w:fldSimple w:instr="PAGE">
<W:ir>
<KW:rPr>
<w:noProof/>
</w:rPr>
<w:t>i</w:t>
</wir>
</w:fldSimple>
</w:p>
</w:ftr>

end example)

A Footer part shall be located within the package containing the source relationship (expressed syntactically,
the TargetMode attribute of the Relationship element shall be Internal).

A Footer part is permitted to have explicit relationships to the following parts defined by this Standard:

e Alternative Format Import (§11.3.1)

e Chart(§14.2.1)

e Diagrams: Diagram Colors(§14.2.3), Diagram Data(§14.2.4), Diagram Layout Definition(§14.2.5) and
Diagram Styles (§14.2.6)

e Embedded Control Persistence (§15.2.8)

e Embedded Object (§15.2.9)

e Embedded Package (§15.2.10)

e Hyperlinks (§15.3)

e Images (§15.2.13)

e Video (§15.2.16)

A Footer part shall not have any implicit or explicit relationships to any other part defined by this Standard.

11.3.7 Footnotes Part

Content Type: | application/vnd.openxmlformats-officedocument.wordprocessingml.footnotes+xml

Root http://schemas.openxmlformats.org/wordprocessingml|/2006/main
Namespace:

38

10
11

12

13

14

15
16
17
18
19
20
21
22

23

24

25
26

WordprocessingML

Source http://schemas.openxmlformats.org/officeDocument/2006/relationships/footnotes
Relationship:

An instance of this part type contains all the footnotes for the document.

A package shall contain no more than two Footnotes parts. If it exists, one instance of that part shall be the
target of an implicit relationship from the Main Document (§11.3.10) part, and the other shall be the target of
an implicit relationship from the Glossary Document (§11.3.8) part.

[Example: The Main Document part-relationship item contains a relationship to the Footnotes part, which is
stored as the ZIP item footnotes.xml:

<Relationships xmlns="..">
<Relationship Id="rId5"
Type="http://../footnotes"” Target="footnotes.xml"/>
</Relationships>

end example]
The root element for a Footnotes part shall be footnotes.
[Example:

<w:footnotes xmlns:w="." ..>
<w:footnote ..>

</w:footnote>
<w:footnote ..>

</w:footnote>
</w:footnotes>

end example)
The XML markup for a footnote in a Main Document part involves the footnoteReference element.

[Example: Consider the case in which the Main Document part contains the text "... in the Standard.", and
there is a footnote inserted immediately after the period:

39

O 00 N OO s~ W N e

S
N L, O

13

14
15

16
17

19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37

WordprocessingML

<W:p .>

<W:r>
<w:t>... in the Standard.</w:t>
</wir>
<W:r>
<W:rPr>
<w:rStyle w:val="FootnoteReference"/>
</W:rPr>
<w:footnoteReference w:id="5"/>
</wir>
</w:ip>

end example]

Each footnote has a corresponding footnote element in the Footnotes part, which contains the text of the
footnote and the footnoteRef element.

[Example: The text of the footnote is "This can be downloaded from http://www.aabbcc.com/index.html."
where "http://www.aabbcc.com/index.html" is marked as a hyperlink:

<w:footnotes xmlns:w="..
<w:footnote w:id="5">

<W:p>
<W:r>
<W:rPr>
<w:rStyle w:val="FootnoteReference"/>
</w:rPr>
<w:footnoteRef/>
</wir>
<W:r>
<w:t xml:space="preserve">This can be downloaded from </w:t>
</wir>
<w:hyperlink r:id="rId2" w:history="1">
<W:r>
<W:rPr>
<w:rStyle w:val="Hyperlink"/>
</w:rPr>
<w:t>http://www.aabbcc.com/index.html</w:t>
</w:r>

</w:hyperlink>

40

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24
25
26
27
28
29

30
31

WordprocessingML

<W:r>
<KwW:t>.</wit>
</wir>
</w:p>
</w:footnote>
</w:footnotes>

end example)

A Footnotes part shall be located within the package containing the source relationship (expressed
syntactically, the TargetMode attribute of the Relationship element shall be Internal).

A Footnotes part is permitted to have explicit relationships to the following parts defined by this Standard:

e Alternative Format Import (§11.3.1)

e (Chart(§14.2.1)

e Diagrams: Diagram Colors(§14.2.3), Diagram Data(§14.2.4), Diagram Layout Definition(§14.2.5) and
Diagram Styles (§14.2.6)

e Embedded Control Persistence (§15.2.8)

e Embedded Object (§15.2.9)

e Embedded Package (§15.2.10)

e Hyperlinks (§15.3)

e Images (§15.2.13)

e Video (§15.2.16)

A Footer part shall not have any implicit or explicit relationships to any other part defined by this Standard.

11.3.8 Glossary Document Part

Content Type: | application/vnd.openxmlformats-officedocument.wordprocessingml.document.glossary+xml
Root http://schemas.openxmlformats.org/wordprocessingml|/2006/main

Namespace:

Source http://schemas.openxmlformats.org/officeDocument/2006/relationships/glossaryDocument
Relationship:

An instance of this part type is a supplementary document storage location which stores the definition and
content for content that shall be carried with the document for future insertion and/or use, but which shall not
be visible within the contents of the main document story. [Example: A legal contract template might include
one or more optional clauses that shall not appear in the document until those clauses are inserted explicitly
via a user action. To store these optional clauses until they are inserted, their contents are placed in the
glossary document part. end example]

[Note: This part is intended for storage of optional "document fragments" which are often used to perform
document assembly. The use of the word glossary is a reference to the fact that each of these entries was

41

o1}

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30

32

33
34

35
36

WordprocessingML

historically referenced by its first word in legacy word processing applications, like definitions of terms in a
traditional glossary. end note]

The root element for a part of this content type shall be glossaryDocument.

[Example: The following part contains two building blocks. The first block is named "rainbow colors", belongs
to a category called "Misc", belongs to a gallery called "docParts", and contains the text "The colors ... and
violet." The details of the second block have been omitted:

<w:glossaryDocument xmlns:w="." >
<w:docParts>
<w:docPart>
<w:docPartPr>
<w:name w:val="rainbow colors"/>
<w:style w:val="Normal"/>
<w:category>
<w:name w:val="Misc"/>
<w:gallery w:val="docParts"/>
</w:category>
</w:docPartPr>
<w:docPartBody>
<W:p>
<W:ir>
<w:t>The colors of the rainbow are red, orange, yellow,
green, blue, indigo, and violet.</w:t>
</wir>
</w:p>
</w:docPartBody>
</w:docPart>
<w:docPart>

</w:docPart>
</w:docParts>
</w:glossaryDocument>

end example]

A package shall contain at most one Glossary Document part, and that part shall be the target of an implicit
relationship from the Main Document (§11.3.10) part.

[Example: The following Main Document part-relationship item contains a relationship to a Glossary Document
part, which is stored in the ZIP item glossary/document.xml:

42

10

11

12

13

14

15

16

17

19

20

21

22

23

24

25

26

27

28

29

30

31

32
33

34

WordprocessingML

<Relationships xmlns="..">
<Relationship Id="rId4"
Type="http://../glossaryDocument" Target="glossary/document.xml"/>
</Relationships>

end example]

A Glossary Document part shall be located within the package containing the source relationship (expressed

syntactically, the TargetMode attribute of the Relationship element shall be Internal).

A Glossary Document part is permitted to have implicit relationships to the following parts defined by this

Standard:

e Comments (§11.3.2)

e Document Settings (§11.3.3)

e Endnotes (§11.3.4)

e Font Table (§11.3.5)

e Footnotes (§11.3.7)

e Numbering Definitions (§11.3.11)
e Style Definitions (§11.3.11)

A Glossary Document part is permitted to have explicit relationships to the following parts defined by this

Standard:

e Alternative Format Import (§11.3.1)

e Chart (§14.2.1)

e Diagrams: Diagram Colors (§14.2.3), Diagram Data (§14.2.4), Diagram Layout Definition (§14.2.5) and
Diagram Styles (§14.2.6)

e Embedded Control Persistence (§15.2.8)

e Embedded Object (§15.2.9)

e Embedded Package (§15.2.10)

e Footer (§11.3.6)

e Header(§11.3.9)

e Hyperlinks (§15.3)

e Images (§15.2.13)

e Printer Settings (§15.2.14)

e Video (§15.2.16)

A Glossary Document part shall not have implicit or explicit relationships to any other part defined by this

Standard.

11.3.9 Header Part

Content Type:

application/vnd.openxmlformats-officedocument.wordprocessingml.header+xml

43

10
11
12

13

14

15

16
17
18

19

20
21

22

23

WordprocessingML

Root http://schemas.openxmlformats.org/wordprocessingml|/2006/main

Namespace:

Source http://schemas.openxmlformats.org/officeDocument/2006/relationships/header
Relationship:

An instance of this part type contains the information about a header displayed for one or more sections.

A package shall contain zero or one Header part for each kind of header (first page, odd page, or even page) in
each section of the document. Each Header part shall be the target of an explicit relationship from the Main
Document (§11.3.10) part or the Glossary Document (§11.3.8) part.

[Example: The Main Document part-relationship item contains two relationships: one for the even header part
(which is stored as the ZIP item header2.xml) and one for the odd header part (which is stored as the ZIP item
header3.xml):

<Relationships xmlns="..">
<Relationship Id="rId89" Type="http://../header" Target="header2.xml"/>
<Relationship Id="rId90" Type="http://../header" Target="header3.xml"/>
</Relationships>

end example)
The root element for a Header part shall be hdr.
[Example:

<W:hdr xmlns:w="." ..>

</w:hdr>
end example]

The XML markup for a header in a section of a Main Document part involves the headerReference element in
that section's sectPr element.

[Example: Consider the case in which a section in the Main Document part contains odd and even headers, and
an odd footer:

44

O 00 N OO s~ W N e

[~ T = = R S
v A W N L O

16

17

18

19
20
21
22
23
24
25
26
27
28

29

WordprocessingML

<w:body>

<w:sectPr w:rsidR="00363F31" w:rsidSect="008D4B40">
<w:headerReference w:val="rId89" w:type="default"/>
<w:headerReference w:val="rId90" w:type="even"/>
<w:headerReference w:val="rId91" w:type="first"/>
<w:type w:val="oddPage"/>
<W:pgSz w:w="11909" w:h="16834" w:code="9"/>
<w:pgMar w:top="1440" w:right="1152" w:bottom="1440"

w:left="1152" w:header="720" w:footer="720" w:gutter="0"/>

<w:1nNumType w:countBy="1"/>
<w:pgNumType w:fmt="lowerRoman"/>
<w:cols w:space="720"/>

</w:sectPr>

</w:body>

end example]
Each header has a corresponding hdr element in a Header part, which contains the text of the header.
[Example: Here is the even header corresponding to the examples above

<w:hdr xmlns:w=".">
<w:p>
<w:pPr>
<w:pStyle w:val="Header"/>
</w:pPr>
<W:r>
<w:t>My Test Document</w:t>
</wir>
</w:p>
</w:hdr>

Here is the odd header corresponding to the examples above:

45

O 00 N OO s~ W N e

=
» O

Jany
N

13
14

15

16
17
18
19
20
21
22
23
24

25

26

27

28

29

WordprocessingML

<w:hdr xmlns:w="..">
<w:p>
<W:pPr>
<w:pStyle w:val="Header"/>
</w:pPr>
<W:r>
<w:tab/>
<w:t>Table of Contents</w:t>
</w:r>
</w:p>
</w:hdr>

end example]

A Header part shall be located within the package containing the source relationship (expressed syntactically,
the TargetMode attribute of the Relationship element shall be Internal).

A Header part is permitted to have explicit relationships to the following parts defined by this Standard:

e Alternative Format Import (§11.3.1)

e Chart (§14.2.1)

e Diagrams: Diagram Colors(§14.2.3), Diagram Data(§14.2.4), Diagram Layout Definition(§14.2.5) and
Diagram Styles (§14.2.6)

e Embedded Control Persistence (§15.2.8)

e Embedded Object (§15.2.9)

e Embedded Package (§15.2.10)

e Hyperlinks (§15.3).

e Images (§15.2.13)

e Video (§15.2.16)

A Header part shall not have any implicit or explicit relationships to other parts defined by this Standard.

11.3.10 Main Document Part

Content application/vnd.openxmlformats-officedocument.wordprocessingml.main+xml

Type(s): application/vnd.openxmlformats-officedocument.wordprocessingml.template.main+xml
Root http://schemas.openxmlformats.org/wordprocessingml/2006/main

Namespace:

Source http://schemas.openxmliformats.org/officeDocument/2006/relationships/officeDocument
Relationship:

An instance of this part type contains the body of the document.

46

0 N o O

10
11
12
13
14

15

16
17

18
19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

WordprocessingML

A package shall contain a Main Document part (§11.3.10) part. The Main Document part shall be the target of
a relationship in the package-relationship item.

The root element for a part of this content type shall be document.

[Example: Given the following package-relationship item excerpt:

<Relationships xmlns="..">
<Relationship Id="rId1"
Type="http://../officeDocument” Target="word/document.xml"/>
</Relationships>

/word/document.xml" contains the following:

<w:document ..>
<w:body>

</w:body>
</w:document>

end example)

A Main Document part shall be located within the package containing the source relationship (expressed
syntactically, the TargetMode attribute of the Relationship element shall be Internal).

A Main Document part is permitted to have implicit relationships to the following parts defined by this
Standard:

e Additional Characteristics (§15.2.1)
e Bibliography (§15.2.3)

e Comments (§11.3.2)

e Custom XML Data Storage (§15.2.4)
e Document Settings (§11.3.3)

e Endnotes (§11.3.4)

e Font Table (§11.3.5)

e Footnotes (§11.3.7)

e Glossary Document (§11.3.8)

e Numbering Definitions (§11.3.11)
e Style Definitions (§11.3.12)

e Theme (§14.2.7)

e Thumbnail (§15.2.14)

A Main Document part is permitted to contain explicit relationships to the following parts defined by this
Standard:

47

10

11

12

13

14

15

16

17

18
19

20
21

22

23

24

25
26

27
28
29

WordprocessingML

e Alternative Format Import (§11.3.1)

e Chart(§14.2.1)

o Diagrams: Diagram Colors(§14.2.3), Diagram Data(§14.2.4), Diagram Layout Definition(§14.2.5) and
Diagram Styles (§14.2.6)

e Embedded Control Persistence (§15.2.8)

e Embedded Object (§15.2.9)

e Embedded Package (§15.2.10)

e Footer (§11.3.6)

e Header (§11.3.9)

e Hyperlinks (§15.3)

o Images (§15.2.13)

e Printer Settings (§15.2.14)

e Subdocument (§11.6)

e Video (§15.2.16)

A Main Document shall not have implicit or explicit relationships to any other part defined by this Standard.

11.3.11 Numbering Definitions Part

Content Type: | application/vnd.openxmlformats-officedocument.wordprocessingml.numbering+xml|
Root http://schemas.openxmlformats.org/wordprocessingml|/2006/main

Namespace:

Source http://schemas.openxmliformats.org/officeDocument/2006/relationships/numbering
Relationship:

An instance of this part type contains a definition for the structure of each unique numbering definition in this
document.

[Example: If a set of paragraphs are added to a document which have a circle bullet at the first level, a square
bullet at the second level, and a checkmark bullet at the third level, such as the following:

e First level
= Second level
v" Third level

The numbering definition part will contain the definition for each of these levels (their bullet style, indent, etc.)
even if the second and third levels are not actually used in the document end example]

A package shall contain no more than two Numbering Definitions parts. If they exist, one instance of that part
shall be the target of an implicit relationship from the Main Document (§11.3.10) part, and the other shall be
the target of an implicit relationship from the Glossary Document (§11.3.8) part.

48

u A W N

10

11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30

WordprocessingML

[Example:

<Relationships xmlns="..">
<Relationship Id="rId2"
Type="http://../numbering” Target="numbering.xml"/>
</Relationships>

end example]

The XML markup for a list usage involves a reference to a numbering definition via the child elements of the
numPr element.

[Example: Here we have a paragraph set using the style Text, followed by a list of things which have the
paragraph style ListBullet, followed by another paragraph set using the style Text:

<w:p>
<W:pPr>
<w:pStyle w:val="Text"/>
</wW:pPr>
<w:ir>
<w:t>The kinds of fruit needed are:</w:t>
</wir>
</wip>
<w:p>
<W:pPr>
<w:pStyle w:val="ListBullet"/>
<W:numPr>
<w:ilvl w:val="@" />
<w:numId w:val="5" />
</w:numPr>
</w:pPr>
<W:r>
<w:t>Apples</w:t>
</wir>
</w:p>

49

O 00 N OO s~ W N e

L I e N T e e e
O © ©® N O U B W N KL O

21

22

23

24

25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41

WordprocessingML

<W:p>
<W:pPr>
<w:pStyle w:val="ListBullet"/>
<W:numPr>
<w:ilvl w:val="e" />
<w:numId w:val="5" />
</w:numPr>
</w:pPr>
<W:r>
<w:t>0Oranges</w:t>
</wir>
</w:ip>
<W:p>
<W:pPr>
<w:pStyle w:val="Text"/>
</W:pPr>
<W:r>
<w:t>0ther items may be needed too.</w:t>
</wir>
</wip>

end example)

The root element for a Numbering Definition part shall be numbering, with each numbering definition being
defined by an abstractNum element.

[Example:

<W:numbering xmlns:w=".">
<w:abstractNum w:numId="11">
<w:nsid w:val="394E2425"/>
<w:multilLevelType w:val="hybridMultilevel"/>
<w:tmpl w:val="F628E89A"/>
<w:lvl w:ilvl="0" w:tplc="151C4798">
<w:start w:val="1"/>
<w:numFmt w:val="bullet"/>
<w:pStyle w:val="ListBullet"/>
<w:lvlText w:val="."/>
<w:1v1lJc w:val="left"/>
<w:pPr>
<w:tabs>
<w:tab w:val="1ist" w:pos="720"/>
</w:tabs>
<w:ind w:left="720" w:hanging="360"/>
</w:pPr>

50

N o o A wWwN

10

11
12

13

14
15

16

17

18

19
20
21

22

23
24
25
26

27

28
29

WordprocessingML

<W:rPr>
<w:rFonts w:ascii="Symbol" w:hAnsi="Symbol" w:hint="default"/>
</wirPr>
</w:lvl>

</w:abstractNum>
</w:numbering>

end example]

A Numbering Definitions part shall be located within the package containing the source relationship (expressed
syntactically, the TargetMode attribute of the Relationship element shall be Internal).

A Numbering Definitions part is permitted to contain explicit relationships to the following parts defined by
this Standard:

e Images (§15.2.13)

A Numbering Definitions part shall not have any implicit or explicit relationships to any other part defined by
this Standard.

11.3.12 Style Definitions Part

Content Type: | application/vnd.openxmlformats-officedocument.wordprocessingml.styles+xml|
Root http://schemas.openxmlformats.org/wordprocessingml|/2006/main
Namespace:

Source http://schemas.openxmlformats.org/officeDocument/2006/relationships/styles
Relationship:

An instance of this part type contains the definition for a set of styles used by this document.

A package shall contain at most two Style Definitions parts. One instance of that part shall be the target of an
implicit relationship from the Main Document (§11.3.10) part, and the other shall be the target of an implicit
relationship in from the Glossary Document (§11.3.8) part.

[Example:

<Relationships xmlns="..">
<Relationship Id="rId3"
Type="http://../styles" Target="styles.xml"/>
</Relationships>

end example)

The root element for a Styles Definition part shall be styles, which is a container for one or more style
elements.

51

O 00 N o U b~ W N

11
12
13
14
15
16
17
18

20

21
22

23

24

25

26

27
28
29

30

WordprocessingML

[Example: Here is the style ListBullet (which is used in a Main Document Part in §11.3.10):

<w:styles xmlns:wx=".." xmlns:w=".." .. xml:space="preserve">
<w:style w:type="paragraph" w:styleId="ListBullet">
<w:name w:val="List Bullet"/>
<w:basedOn w:val="Text"/>
<w:autoRedefine/>
<w:rsid w:val="00081289"/>
<W:pPr>

<w:pStyle w:val="ListBullet"/>
<W:numPr>

<w:numId w:val="1"/>
</wW:numPr>
<w:tabs>

<w:tab w:val="clear" w:pos="360"/>
</w:tabs>
<w:ind w:left="648"/>

</w:pPr>

</wW:

style>

</w:styles>

end example]

A Style Definitions part shall be located within the package containing the source relationship (expressed

syntactically, the TargetMode attribute of the Relationship element shall be Internal).

A Style Definitions part shall not have implicit or explicit relationships to any part defined by this Standard.

11.3.13 Web Settings Part

Content Type: | application/vnd.openxmlformats-officedocument.wordprocessingml.webSettings+xmi
Root http://schemas.openxmliformats.org/wordprocessingml/2006/main

Namespace:

Source http://schemas.openxmliformats.org/officeDocument/2006/relationships/webSettings
Relationship:

An instance of this part type contains the definition for web-specific settings used by this document.

A package shall contain at most two Web Settings parts. One instance of that part shall be the target of an

implicit relationship from the Main Document (§11.3.10) part, and the other shall be the target of an implicit

relationship from the Glossary Document (§11.3.8) part.

[Example:

52

A W N

10
11
12
13
14
15
16
17
18
19
20
21

22

23
24

25
26

27

28
29

30

31

32
33

WordprocessingML

<Relationships xmlns="..">
<Relationship Id="rId3"
Type="http://../webSettings" Target="webSettings.xml"/>
</Relationships>

end example]
The root element for a Web Settings part shall be webSettings.
[Example:

<w:webSettings ..>
<w:frameset>

<w:frame>
<wW:sz w:val="216" />
<w:name w:val="Frame2" />
<w:sourceFileName r:id="rId1" />
</w:frame>
<w:frame>
<w:name w:val="Framel" />
<w:sourceFileName r:id="rId2" />
</w:frame>
</w:frameset>
</w:webSettings>

end example)

A Web Settings part shall be located within the package containing the source relationship (expressed
syntactically, the TargetMode attribute of the Relationship element shall be Internal).

A Web Settings part is permitted to contain explicit relationships to the following parts defined by this
Standard:

e Frameset (§11.5)

A Web Settings part shall not contain implicit or explicit relationships to any other part defined by this
Standard.

11.4 Document Template

Source http://schemas.openxmlformats.org/officeDocument/2006/relationships/attachedTemplate
Relationship:

A document template can be represented by an instance of a WordprocessingML package, and contains styles,
numbering definitions, and so on that are made available when documents based on that template are edited.

53

O 00 N o wun

10
11

12
13
14

15

16

17

18
19
20
21

22
23
24

25
26
27
28
29

31

WordprocessingML

A WordprocessingML document can refer to another document as its document template, by having a
Document Settings part (§11.3.3) that contains an explicit relationship to the file location of the necessary
document template using the id attribute on the attachedTemplate element.

[Example: Consider a document specifying a document template located at c:\template.docx:

<Relationships xmlns="..">
<Relationship Id="rId1"
Type="http://../attachedTemplate" Target="file:///c:\template.docx"
TargetMode="External"/>
</Relationships>

The document’s Document Settings part contains an attachedTemplate element that explicitly references this
relationship:

<w:settings .. >
<w:attachedTemplate r:id="rIdl"/>
</w:settings>

end example)

11.5 Framesets

Source http://schemas.openxmlformats.org/officeDocument/2006/relationships/frame
Relationship:

A frameset is a WordprocessingML document which specifies the location and placement of other
WordprocessingML documents (which, when used in this context, are referred to as frames). A frameset shall
be represented by an instance of a WordprocessingML document with a Web Settings part (§11.3.13) whose
relationship item targets each of that frameset's frames.

[Example: Consider a frameset document having two frames. The frameset's Web Settings part-relationships
item contains the following, in which framel.docx and frame2.docx are packages containing the corresponding
frames:

<Relationships xmlns="..">
<Relationship Id="rId1"
Type="http://../frame" Target="framel.docx" TargetMode="External"/>
<Relationship Id="rId2"
Type="http://../frame" Target="frame2.docx" TargetMode="External"/>
</Relationships>

The frameset document’s Web Settings part contains a frameset element that references its frames:

54

O 00 N OO s~ W N e

T e =
A W N L O

15

16

17
18

19

20

21
22

23
24
25
26
27

28
29
30

31
32
33
34

WordprocessingML

<w:webSettings ..>
<w:frameset>

<w:frame>
<w:sz w:val="216" />
<w:name w:val="Frame2" />
<w:sourceFileName r:id="rId1l" />
</w:frame>
<w:frame>
<w:name w:val="Framel"” />
<w:sourceFileName r:id="rId2" />
</w:frame>
</w:frameset>
</w:webSettings>

end example]
A frame shall be represented by an instance of a WordprocessingML package.

A frame shall be located external to the package containing the source relationship (expressed syntactically,
the TargetMode attribute of the Relationship element shall be External).

11.6 Master Documents and Subdocuments

Source http://schemas.openxmliformats.org/officeDocument/2006/relationships/subDocument
Relationship:

A master document shall be represented by an instance of a WordprocessingML document whose Main
Document (§11.3.10) part targets each of that master document’s subdocuments.

[Rationale: Sometimes, it is convenient to deal with a document as a collection of pieces, especially when
those pieces might be edited by different authors in a collaborative group. Perhaps it simply makes sense to
think about a book as a collection of chapters rather than as one big document. The breaking-up of a
document into such pieces can be achieved by having a master document with one or more subdocuments.
end rationale]

[Example: Consider a master document, whose three subdocuments are called Start, Middle, and End,
respectively. Master’s Main Document part has a corresponding relationships part that contains the following,
in which Start.docx, Middle.docx, and End.docx are packages containing the corresponding subdocuments:

<Relationships xmlns="..">
<Relationship Id="rId5"
Type="http://../subDocument"
Target="Start.docx" TargetMode="External"/>

55

10
11
12
13
14
15
16
17
18
19
20
21
22

24

25

26
27

28

29

30
31
32

33
34

WordprocessingML

<Relationship Id="rId6"
Type="http://../SubDocument"
Target="Middle.docx" TargetMode="External"/>
<Relationship Id="rId7"
Type="http://../SubDocument"
Target="End.docx" TargetMode="External"”/>
</Relationships>

The master document’s Main Document part contains subDoc elements that reference its subdocuments:

<w:document xmlns:r="." xmlns:wx="." ..>
<w:body>
<W:p .>
<W:pPr>

</wW:pPr>
</w:p>
<w:subDoc r:id="rId5"/>

<w:subDoc r:id="rId6"/>
<w:subDoc r:id="rId7"/>

</w:body>
</w:document>

end example)
A subdocument shall be represented by an instance of a WordprocessingML package.

A subdocument shall be located external to the package containing the source relationship (expressed
syntactically, the TargetMode attribute of the Relationship element shall be External).

11.7 Mail Merge Data Source

Source http://schemas.openxmlformats.org/officeDocument/2006/relationships/mailMergeSource
Relationship:

A document that stores information about a mail merge operation is permitted to contain a Document Settings
part (§11.3.3) whose relationship item targets the file location of the necessary data source using this
relationship.

[Example: Consider a document specifying a mail merge whose data source is located at
http://www.openxmlformats.org/data.txt:

56

a U A~ W N

10
11
12
13
14
15

16

17

18

19

20

21
22

23

24
25

26
27
28
29
30
31

32
33

WordprocessingML

<Relationships xmlns="..">
<Relationship Id="rId1"
Type="http://../mailMergeSource”
Target="http://www.openxmlformats.org/data.txt"
TargetMode="External"/>
</Relationships>

The document’s Document Settings part contains a dataSource element that explicitly references this
relationship:

<w:settings ..>
<w:mailMerge>

<w:dataSource r:id="rId1l" />

</w:mailMerge>
</w:settings>

end example)

A mail merge data source shall be located external to the package containing the source relationship
(expressed syntactically, the TargetMode attribute of the Relationship element shall be External).

11.8 Mail Merge Header Data Source

Source http://schemas.openxmliformats.org/officeDocument/2006/relationships/mailMergeHeaderS
Relationship: | ource

A document that stores information about a mail merge operation is permitted to contain a Document Settings
part (§11.3.3) whose relationship item targets the file location of the necessary header data source using this
relationship.

[Example: Consider a document specifying a mail merge whose header data source is located at
http://www.openxmlformats.org/header.txt:

<Relationships xmlns="..">
<Relationship Id="rId2"
Type="http://../mailMergeHeaderSource"
Target=http://www.openxmlformats.org/header.txt
TargetMode="External"/>
</Relationships>

The document’s Document Settings part contains a headerSource element that explicitly references this
relationship:

57

N o o A wWwN

10

11

12

13
14
15

16
17

18
19
20
21
22

23
24

25
26
27
28
29

30

31
32

WordprocessingML

<w:settings ..>
<w:mailMerge>

<w:headerSource r:id="rId2" />

</w:mailMerge>
</w:settings>

end example]

A mail merge header data source shall be located external to the package containing the source relationship
(expressed syntactically, the TargetMode attribute of the Relationship element shall be External).

11.9 XSL Transformation

Source http://schemas.openxmliformats.org/officeDocument/2006/relationships/transform
Relationship:

A document can store information about an XSL Transformation which might be applied on save, by containing
a Document Settings part (§11.3.3) whose part relationship item contains an explicit relationship to the file
location of the XSL Transformation using this relationship.

[Example: Consider a document specifying an XSL Transformation located at
http://www.openxmlformats.org/test.xsl:

<Relationships xmlns="..">
<Relationship Id="rId8" Type="http://../transform"
Target="http://www.openxmlformats.org/test.xsl"
TargetMode="External"/>
</Relationships>

The document’s Document Settings part contains a saveThroughXslt element that explicitly references this
relationship:

<w:settings ..>
<w:saveThroughXslt r:id="rId8" />

</w:settings>
end example]

An XSL transformation shall be located external to the package containing the source relationship (expressed
syntactically, the TargetMode attribute of the Relationship element shall be External).

58

10

11
12
13
14
15

16

17
18

19

20
21

22

23
24
25

26

27
28

SpreadsheetML

12. SpreadsheetML

This clause contains specifications for relationship items and parts that are specific to SpreadsheetML. Parts
than can occur in a SpreadsheetML document, but are not SpreadsheetML-specific, are specified in §15.2.
Unless stated explicitly, all references to relationship items, content-type items, and parts in this clause refer
to SpreadsheetML ZIP items.

12.1 Glossary of SpreadsheetML-Specific Terms

The following terms are used in the context of a SpreadsheetML document:

cell — The location at the intersection of a row and column, in which numeric or textual data or a formula is
stored. A cell can have a number of characteristics, such as numeric or text formatting, alignment, font, color,
and border.

cell reference — An individual cell's designation using a combination of its column and row headings, as in
A13, H19, and BX1200. A relative cell reference in a formula automatically changes when the formula is copied
down a column or across a row. An absolute cell reference is fixed. Absolute references don't change when a
formula is copied from one cell to another. A mixed cell reference has either an absolute column and a relative
row, or an absolute row and a relative column.

chart — A graphical representation of data, as in a bar, column, line, pie chart, for example.

column — Any vertical set of cells in a worksheet. Each column has an alphabetic heading. Columns are named
sequentially, going from A-Z, then AA—AZ, BA—BZ, and so on.

comment — A reminder or annotation that can be attached to a cell.

connection — The means by which external data—that is, data stored outside of a workbook (in a database or
on a Web server, for example)—can be imported into a worksheet.

formula — A recipe for calculating a value. Some formulas are predefined; others are user-defined.

function — A predefined formula, such as AVERAGE, MAX, MIN, and SUM. A function takes one or more
arguments on which it operates, producing a result. [Note: In the formula =SUM(B1:B4), there is one
argument, B1:B4, which is the range of cells B1-B4, inclusive. end note]

pivot table — A kind of table that is used to manage and analyze related data that is stored elsewhere.

row — Any horizontal set of cells in a worksheet. Each row has a numeric heading. Rows are numbered
sequentially, starting at 1.

59

10
11
12

13

14

15
16

17

18

19
20
21
22
23
24
25
26
27
28
29

30
31

32

SpreadsheetML

table — A rectangular-shaped set of related rows and columns that can be sorted, filtered, and totaled as a
group. Rows in a table can be hidden by applying autofilters to one or more columns.

workbook — A collection of worksheets.

worksheet — A two-dimensional grid of cells that are organized into rows and columns.

12.2 Package Structure

A SpreadsheetML package shall contain a package-relationship item and a content-type item. The package-
relationship item shall contain implicit relationships with targets of the following type:

e One Workbook part (12.3.23).
The package-relationship item is permitted to contain implicit relationships with targets of the following type:

e Digital Signature Origin (§15.2.6)

o File Property parts (§15.2.11) (Application-Defined File Properties, Core File Properties, and Custom
File Properties), as appropriate.

e Thumbnail (§15.2.14).

The required and optional relationships between parts are defined in §12.3 and its subordinate clauses.

[Example: The following package represents the minimal conformant SpreadsheetML package as defined by
this Standard:

First, the content types for relationship parts, the Workbook part, and at least one Sheet part must be defined
(physically located at /[Content_Types].xml in the package):

<Types xmlns=".">
<Default Extension="rels"
ContentType="application/vnd.openxmlformats-package.relationships+xml"
/>
<Override PartName="/workbook.xml"
ContentType="application/vnd.openxmlformats-officedocument.
spreadsheetml.sheet.main+xml" />
<Override PartName="/sheetl.xml"
ContentType="application/vnd.openxmlformats-
officedocument. spreadsheetml.worksheet+xml" />
</Types>

Next, the required package-level relationship to the Workbook part must be defined (physically located at
/_rels/.rels in the package):

<Relationships xmlns="..">

60

10
11
12

13
14

15
16
17
18
19

20
21

22
23
24

25

26
27
28
29

30
31
32
33
34
35

SpreadsheetML

<Relationship Id="rId1"
Type=http://schemas.openxmlformats.org/officeDocument/2006/
relationships/officeDocument”
Target="workbook.xml" />
</Relationships>

Next, the minimum content for the Workbook part must be defined (physically located at /workbook.xml in
the package):

<workbook xmlns="." xmlns:r="..">
<sheets>
<sheet name="1" sheetId="1" r:id="rId1l" />
</sheets>
</workbook>

Next, the required workbook-level relationship to the single Sheet part must be defined, (physically located at
/_rels/workbook.xml.rels in the package):

<Relationships xmlns="..">
<Relationship Id="rId1"
Type="http://schemas.openxmlformats.org/officeDocument/2006/
relationships/worksheet"” Target="sheetl.xml" />
</Relationships>

Finally, the minimum content for a single Sheet part must be defined (physically located at /sheetl.xml in the
package):

<worksheet xmlns="." xmlns:r="..">
<sheetData />
</worksheet>

end example]

[Example: Consider a SpreadsheetML document that contains a workbook having three worksheets. Here’s an
example of the hierarchical folder structure that might be used for the ZIP items in the package for that
document. As shown, one part, Workbook (stored in the ZIP item /xl|/workbook.xml), has its own relationship

item:
/_rels/.rels Package-relationship item
/[Content_Types].xml Content-type item
/docProps/app.xml Application-Defined File Properties part
/docProps/core.xml Core File Properties part
/x1/workbook.xml Workbook part
/x1/_rels/workbook.xml.rels Part-relationship item

61

0 N o b~ W N

o

11
12
13
14
15
16
17

18

19

20
21

SpreadsheetML

/x1/calcChain.xml
/x1/sharedStrings.xml
/x1/styles.xml
/x1/volatileDependencies.xml
/x1/theme/themel.xml
/x1/worksheets/sheetl.xml
/x1/worksheets/sheet2.xml
/x1/worksheets/sheet3.xml

Calculation Chain part
Shared String Table part
Styles part

Volatile Dependencies part
Theme part

Worksheet parts

The package-relationship item contains the following:

<Relationships xmlns="..">
<Relationship Id="rId3"
Type="http://../extended-properties" Target="docProps/app.xml"/>
<Relationship Id="rId2"
Type="http://../core-properties” Target="docProps/core.xml"/>
<Relationship Id="rId1"
Type="http://../officeDocument"” Target="x1l/workbook.xml"/>
</Relationships>

end example)

12.3 Part Summary

The subclauses subordinate to this one describe in detail each of the part types specific to SpreadsheetML.
[Note: For convenience, information from those subclauses is summarized in the following table:

Part Relationship Target of Root Element Ref.
Calculation Chain Workbook calcChain §12.3.1
Chartsheet Workbook chartsheet §12.3.2
Comments Chartsheet, Dialogsheet, | comments §12.3.3

Worksheet
Connections Workbook connections §12.3.4
Custom Property Workbook Not applicable §12.3.5
Custom XML Workbook maplnfo §12.3.6
Mappings
Dialogsheet Workbook dialogSheet §12.3.7
Drawings Chartsheet, Worksheet wsDr §12.3.8
External Workbook Workbook externalReference §12.3.9
References
Metadata Workbook metadata §12.3.10
Pivot Table Worksheet pivotTableDefinition | §12.3.11

62

10

SpreadsheetML

Part Relationship Target of Root Element Ref.
Pivot Table Cache Pivot Table, Workbook pivotCacheDefinition | §12.3.12
Definition
Pivot Table Cache Pivot Table Cache pivotCacheRecords §12.3.13
Records Definition
Query Table Worksheet queryTable §12.3.14
Shared String Table Workbook sst §12.3.15
Shared Workbook Workbook headers §12.3.16
Revision Headers
Shared Workbook Shared Workbook revisions §12.3.17
Revision Log Revision Headers
Shared Workbook Workbook users §12.3.18
User Data
Single Cell Table Dialogsheet, Worksheet | singleCells §12.3.19
Definitions
Styles Workbook styleSheet §12.3.20
Table Definition Dialogsheet, Worksheet | table §12.3.21
Volatile Workbook volTypes §12.3.22
Dependencies
Workbook SpreadsheetML package | workbook §12.3.23
Worksheet Workbook worksheet §12.3.24
end note]
12.3.1 Calculation Chain Part
Content Type: | application/vnd.openxmlformats-officedocument.spreadsheetml.calcChain+xml
Root http://schemas.openxmlformats.org/spreadsheetml|/2006/main
Namespace:
Source http://schemas.openxmliformats.org/officeDocument/2006/relationships/calcChain
Relationship:

An instance of this part type contains an ordered set of references to all cells in all worksheets in the workbook

whose value is calculated from any formula. The ordering allows inter-related cell formulas to be calculated in

the correct order when a worksheet is loaded for use.

A package shall contain no more than one Calculation Chain part. If it exists, that part shall be the target of an
implicit relationship from the Workbook part (§12.3.23).

[Example: The following Workbook part-relationship item contains a relationship to the Calculation Chain part,

which is stored in the ZIP item calcChain.xml:

63

10
11
12
13

14

15
16

17

18

19

20

21
22

23
24

SpreadsheetML

<Relationships xmlns="..">
<Relationship Id="rId7"
Type="http://../calcChain” Target="calcChain.xml"/>
</Relationships>

end example]
The root element for a part of this content type shall be calcChain.

[Example: Cells D8, E8, and F8 each contain a value that is the result of calculations that shall be performed in
the order ES8, D8, F8:

<calcChain xmlns=".">
<c r="E8" i="1"/>
<c r="D8"/>
<c r="F8" s="1"/>
</calcChain>
end example)

A Calculation Chain part shall be located within the package containing the source relationship (expressed
syntactically, the TargetMode attribute of the Relationship element shall be Internal).

A Calculation Chain part shall not have implicit or explicit relationships to any part defined by this Standard.

12.3.2 Chartsheet Part

Content Type: | application/vnd.openxmlformats-officedocument.spreadsheetml.chartsheet+xml
Root http://schemas.openxmlformats.org/spreadsheetml/2006/main

Namespace:

Source http://schemas.openxmlformats.org/officeDocument/2006/relationships/chartsheet
Relationship:

An instance of this part type represents a chart that is stored in its own sheet.

A package is permitted to contain zero or more Chartsheet parts. Each such part shall be the target of an
explicit relationship from the Workbook part (§12.3.23).

[Example: The following Workbook part-relationship item contains three relationships to Chartsheet parts,
which are stored in the ZIP items chartsheets/sheetN.xml:

64

0 N o b~ W N

10

11
12

13
14
15
16
17
18

19

20
21

22

23

24

25

26

27

28

SpreadsheetML

<Relationships xmlns="..">
<Relationship Id="rId2"
Type="http://../chartsheet” Target="chartsheets/sheetl.xml"/>
<Relationship Id="rId5"
Type="http://../chartsheet"” Target="chartsheets/sheet2.xml"/>
<Relationship Id="rId6"
Type="http://../chartsheet” Target="chartsheets/sheet3.xml"/>
</Relationships>

end example]
The root element for a part of this content type shall be chartsheet.

[Example: sheetl.xml refers to a drawing that is the target of a relationship in the Chartsheet part's
relationship item:

<chartsheet xmlns:r="." ..>
<sheetViews>
<sheetView scale="64"/>
</sheetViews>
<drawing r:id="rId1"/>
</chartsheet>

end example]

A Chartsheet part shall be located within the package containing the source relationship (expressed
syntactically, the TargetMode attribute of the Relationship element shall be Internal).

A Chartsheet part is permitted to have implicit relationships to the following parts defined by this Standard:
e Printer Settings (§15.2.14)

A Chartsheet part is permitted to have explicit relationships to the following parts defined by this Standard:
e Drawings (§12.3.8)

A Chartsheet part shall not have implicit or explicit relationships to any other part defined by this Standard.

12.3.3 Comments Part

Content Type: | application/vnd.openxmlformats-officedocument.spreadsheetml.comments+xml
Root http://schemas.openxmlformats.org/spreadsheetml|/2006/main

Namespace:

Source http://schemas.openxmliformats.org/officeDocument/2006/relationships/comments
Relationship:

65

10

11

12

13
14

16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36

SpreadsheetML

An instance of this part type contains all the comments for a given worksheet, as well as the names of the
authors of those comments.

A package shall contain exactly one Comments part for each worksheet that contains one or more comments.
If a Comments part exists, it shall be the target of an implicit relationship from the Workbook part (§12.3.23).

[Example: The following Worksheet part-relationship item contains a relationship to the Comments part, which
is stored in the ZIP item comments2.xml:

<Relationships xmlns="..">
<Relationship Id="rId2"
Type="http://../comments"” Target="../comments2.xml"/>
</Relationships>

end example]
The root element for a part of this content type shall be comments.

[Example: This Comments part results from a workbook that has one or more comments from each of two
people: James Jones and Mary Smith:

<comments xmlns:st="." >
<authors>
<author>James Jones</author>
<author>Mary Smith</author>
</authors>
<commentList>
<comment r="C7" authorId="0">
<text>
<st:r>
<st:rPr>

</st:rPr>

<st:t>James Jones:</st:t>
</st:r>
<st:r>

<st:rPr>

</st:rPr>
<st:t>Check that this date is correct.</st:t>
</st:r>
</text>
</comment>

66

v A W N

10

11

12

13
14

15
16

17
18
19
20

21

22

23
24

SpreadsheetML

<comment r="E7" authorId="1">

</comment>
</commentList>
</comments>

end example)

A Comments part shall be located within the package containing the source relationship (expressed
syntactically, the TargetMode attribute of the Relationship element shall be Internal).

A Comments part shall not implicit or explicit relationships to any part defined by this Standard.

12.3.4 Connections Part

Content Type: | application/vnd.openxmlformats-officedocument.spreadsheetml.connections+xml
Root http://schemas.openxmlformats.org/spreadsheetml|/2006/main

Namespace:

Source http://schemas.openxmlformats.org/officeDocument/2006/relationships/connections
Relationship:

An instance of this part type describes all of the connections currently established for a workbook.

A package shall contain no more than one Connections part, and that part shall be the target of an implicit
relationship from the Workbook part (§12.3.23).

[Example: The following Workbook part-relationship item contains a relationship to the Connections part,
which is stored in the ZIP item connections.xml:

<Relationships xmlns="..">
<Relationship Id="rId5"
Type="http://../connections” Target="connections.xml"/>
</Relationships>

end example]
The root element for a part of this content type shall be connections.

[Example: A workbook has three connections, two from one worksheet, and one from another.
connections.xml defines these three connections:

67

O 00 N OO s~ W N e

S N T T
N oo A WN B O

18

19
20

21

22

23

24

25
26

27
28

30
31
32

SpreadsheetML

<connections ..>
<connection id="1" odcFile=".." keepAlive="1" name=".." type="5"
refreshedVersion="2" background="1" saveData="1">
<dbPr connection="Provider=MSDASQL.1;Persist Security Info=True;Data
Source=dBASE Files;Extended Properties="DSN=dBASE Files;DBQ=E:\MY
DOCUMENTS ;DefaultDir=E: \MY
DOCUMENTS;DriverId=533;MaxBufferSize=2048;PageTimeout=5;";Initial
Catalog=E:\MY DOCUMENTS" command=""E:\MY DOCUMENTS \ ADDRESS™ "
commandType="3"/>
</connection>
<connection id="2" ..>
<dbPr .. />
</connection>
<connection id="3" .»>
<dbPr .. />
</connection>
</connections>

end example)

A Connections part shall be located within the package containing the source relationship (expressed
syntactically, the TargetMode attribute of the Relationship element shall be Internal).

A Connections part shall not have implicit or explicit relationships to any part defined by this Standard..

12.3.5 Custom Property Part

Content Type: | application/vnd.openxmlformats-officedocument.spreadsheetml.customProperty

Root Not applicable

Namespace:

Source http://schemas.openxmlformats.org/officeDocument/2006/relationships/customProperty
Relationship:

This binary part supports the storage of arbitrary user-defined data.

A package shall contain at most one Custom Property part, and that part shall be the target of an implicit
relationship from the Workbook (§12.3.23) part.

[Example: The following Workbook part-relationship item contains a relationship to the Custom Property part,
which is stored in the ZIP item CustomProperty.bin:

<Relationships xmlns="..">
<Relationship Id="rId7"
Type="http://../customProperty"” Target="CustomProperty.bin"/>
</Relationships>

68

10
11
12

13
14

15
16
17
18

19

20

21

23
24
25
26
27
28
29

SpreadsheetML

end example]

A Custom Property part shall be located within the package containing the source relationship (expressed
syntactically, the TargetMode attribute of the Relationship element shall be Internal).

A Custom Property part shall not have implicit or explicit relationships to any part defined by this Standard.

12.3.6 Custom XML Mappings Part

Content Type: | application/xml

Root http://schemas.openxmlformats.org/spreadsheetml|/2006/main

Namespace:

Source http://schemas.openxmlformats.org/officeDocument/2006/relationships/xmIMaps
Relationship:

An instance of this part type contains a schema for an XML file, and information on the behavior that is used
when allowing this custom XML schema to be mapped into the spreadsheet.

A package shall contain no more than one Custom XML Mappings part, and that part shall be the target of an
implicit relationship from the Workbook part (§12.3.23). The Worksheet part into which this data is imported
shall also have a relationship file that targets one or more Table Definition (§12.3.21) parts and/or one or more
Single Cell Table Defintions (§12.3.19) parts.

[Example: The following Workbook part-relationship item contains a relationship to the Custom XML Mappings
part, which is stored in the ZIP item xmIMaps.xml:

<Relationships xmlns="..">
<Relationship Id="rId9"
Type="http://../xmlMaps" Target="xmlMaps.xml"/>
</Relationships>

end example)
The root element for a part of this content type shall be maplnfo.

[Example: xmIMaps.xml contains the following:

<mapInfo SelectionNamespaces=
<Schema ID="Schemal">
<xsd:schema xmlns:xsd="http://www.w3.0rg/2001/XMLSchema”>
<xsd:element nillable="true" name="names">
<xsd:complexType>
<xsd:sequence minOccurs="0">
<xsd:element minOccurs="0" maxOccurs="unbounded"
nillable="true" name="name" form="unqualified">

>

69

O 00 N OO s~ W N e

N N N N N N N R B R B B B B R R
o U1 A W N B O © ©® N O U1 B W N L O

27

28
29

30
31

32

33

34

SpreadsheetML

<xsd:complexType>
<xsd:sequence minOccurs="0">
<xsd:element minOccurs="0" nillable="true"
type="xsd:string" name="firstname"
form="unqualified"/>
<xsd:element minOccurs="0" nillable="true"
type="xsd:string" name="initial"
form="unqualified"/>
<xsd:element minOccurs="0" nillable="true"
type="xsd:string" name="lastName"
form="unqualified"/>
</xsd:sequence>
</xsd:complexType>
</xsd:element>
</xsd:sequence>
</xsd:complexType>
</xsd:element>
</xsd:schema>
</Schema>
<Map ID="1" Name="names_Map" RootElement="names" SchemalD="Schemal"
ShowImportExportValidationErrors="false" AutoFit="true"
Append="false"
PreserveSortAFLayout="true" PreserveFormat="true">
<DataBinding FileBinding="Test.xml" DataBindinglLoadMode="1"/>
</Map>
</mapInfo>

end example]

A Custom XML Mappings part shall be located within the package containing the source relationship
(expressed syntactically, the TargetMode attribute of the Relationship element shall be Internal).

A Custom XML Mappings part shall not have implicit or explicit relationships to any other part defined by this
Standard.

12.3.7 Dialogsheet Part

Content Type: | application/vnd.openxmlformats-officedocument.spreadsheetml.dialogsheet+xml
Root http://schemas.openxmlformats.org/spreadsheetml|/2006/main

Namespace:

Source http://schemas.openxmlformats.org/officeDocument/2006/relationships/dialogsheet
Relationship:

An instance of this part type contains information about a legacy custom dialog box for a user form.

70

00 N o O

10
11
12
13
14
15
16
17

18

19

20

21
22
23
24
25
26
27
28
29
30

31

32
33

34

35

SpreadsheetML
A package is permitted to contain one or more Dialogsheet parts, and each such part shall be the target of an
explicit relationship from the Workbook part (§12.3.23).

[Example: The following Workbook part-relationship item contains relationships to a Dialogsheet part, which is
stored in the ZIP item dialogsheets/sheetl.xml:

<Relationships xmlns="..">
<Relationship Id="rId2"
Type="http://../dialogsheet"” Target="dialogsheets/sheetl.xml"/>
</Relationships>

The Workbook part contains the following:

<workbook xmlns:r=".." .>
<sheets>

<sheet name="Dialogl" tabId="4" type="dialog" r:id="rId2"/>
</sheets>

</;orkbook>
end example]
The root element for a part of this content type shall be dialogsheet.
[Example: sheetl.xml contains the following:

<dialogsheet xmlns:r="." ..>
<sheetPr>
<pageSetUpPr/>
</sheetPr>
<sheetViews>

</sheetViews>

<legacyDrawing r:id="rId1"/>
</dialogsheet>

end example]

A Dialogsheet part shall be located within the package containing the source relationship (expressed
syntactically, the TargetMode attribute of the Relationship element shall be Internal).

A Dialogsheet part is permitted to have implicit relationships to the following parts defined by this Standard:

e Printer Settings (§15.2.14)

71

10
11
12

13
14

15
16
17
18

19

20

21
22

SpreadsheetML

A Dialogsheet part is permitted to have explicit relationships to the following parts defined by this Standard:

e Embedded Control Persistence (§15.2.8)
e Drawings (§12.3.8)
e Embedded Object (§15.2.9)

A Dialogsheet part shall not have implicit or explicit relationships to any other part defined by this Standard.

12.3.8 Drawings Part

Content Type: | application/vnd.openxmlformats-officedocument.drawing+xml

Root http://schemas.openxmliformats.org/drawingml/2006/spreadsheetDrawing
Namespace:

Source http://schemas.openxmliformats.org/officeDocument/2006/relationships/drawing
Relationship:

An instance of this part type contains the presentation and layout information for one or more drawing
elements that are present on this worksheet.

A package is permitted to contain one or more Drawings parts, and each such part shall be the target of an
explicit relationship from a Worksheet part (§12.3.24), or a Chartsheet part (§12.3.2). There shall be only one
Drawings part per worksheet or chartsheet.

[Example: The following Chartsheet part-relationship item contains a relationship to a Drawings part, which is
stored in the ZIP item ../drawings/drawingl.xml:

<Relationships xmlns="..">
<Relationship Id="rId1"
Type="http:// ../drawing"” Target="../drawings/drawingl.xml"/>
</Relationships>

end example]
The root element for a part of this content type shall be wsDr.

[Example: drawingl.xml refers to a chart that is the target of a relationship in the Drawing part's relationship
item:

72

O 00 N OO s~ W N e

N NN P R R R R R R R R
N B O ©W 0 N O U1 B W N KL O

23

24
25

26

27
28
29
30

31

32

33

<xdr:wsDr xmlns:xdr="." xmlns:a="..">
<xdr:absoluteAnchor>
<xdr:pos x="1518046" y="-1443632"/>
<xdr:extents cx="8587382" cy="5848945"/>
<xdr:graphicFrame macro="">
<xdr:nvGraphicFramePr>
<xdr:cNvPr id="24" name="Chart 24" descr=""/>
<xdr:cNvGraphicFramePr/>
</xdr:nvGraphicFramePr>
<xdr:xfrm>
<a:off x="@" y="0"/>
<a:ext cx="0" cy="0"/>
</xdr:xfrm>
<a:graphic>
<a:graphicData uri="http://../chart">
<a:chart relld="rId1"/>
</a:graphicData>

SpreadsheetML

</a:graphic>
</xdr:graphicFrame>
<xdr:clientData/>
</xdr:absoluteAnchor>
</xdr:wsDr>

end example]

A Drawings part shall be located within the package containing the source relationship (expressed

syntactically, the TargetMode attribute of the Relationship element shall be Internal).

A Drawings part is permitted to have explicit relationships to the following parts defined by this Standard:

e (Chart(§14.2.1)

e Diagrams: Diagram Colors(§14.2.3), Diagram Data(§14.2.4), Diagram Layout Definition(§14.2.5) and
Diagram Styles (§14.2.6)

e Hyperlinks (§15.3)

e Images (§15.2.13)

A Drawings part shall not have any implicit or explicit relationships to any other part defined by this Standard.

12.3.9 External Workbook References Part

Content Type: | application/vnd.openxmlformats-officedocument.spreadsheetml.externalLink+xml
Root http://schemas.openxmliformats.org/spreadsheetml|/2006/main

Namespace:

Source http://schemas.openxmlformats.org/officeDocument/2006/relationships/externalLink
Relationship:

73

10

11
12
13
14
15
16
17
18
19
20
21
22
23

24

25
26
27
28
29

30

31

32

SpreadsheetML

An instance of this part specifies information about data referenced in other SpreadsheetML packages.

[Example: Consider two workbooks, wb1 and wb2, stored in packages called wb1.xlsx and wb2.xlsx,
respectively. The value of a cell on a worksheet in wb1 can be computed using the value of one or more cells in
wb?2. This is done by having wb1 contain an external reference to wb2. end example]

A package is permitted to contain one or more External Workbook References parts, and those parts shall be
the target of an explicit relationship in the Workbook part (§12.3.23).

[Example: A Workbook part for wb1 contains the following, which indicates that somewhere in its three
worksheets, an external reference is made to a target specified in relationship id rld4 of the part's relationship

item:
<workbook xmlns:r="."/>
<sheets>
<sheet name="Sheetl" tabId="1" r:id="rId1"/>
<sheet name="Sheet2" tabId="2" r:id="rId2"/>
<sheet name="Sheet3" tabId="3" r:id="rId3"/>
</sheets>
<externalReferences>
<externalReference r:id="rId4"/>
</externalReferences>
</workbook>

That part's relationship item contains the following:

<Relationships xmlns="..">
<Relationship Id="rId4"
Type="http://../externallLink"
Target="externalReferences/externalReferencel.xml"/>
</Relationships>

end example]
The root element for a part of this content type shall be externalLink.

[Example: externalReferencel.xml contains:

74

O 00 N OO s~ W N e

L I e N T e e e
O © ©® N O U B W N KL O

21

22
23
24
25
26

27

28

29
30

31
32

33
34

35

<externallLink xmlns:r="." .. r:id="rId1l">
<externalBook>
<sheetNames>
<sheetName val="Sheetl"/>
<sheetName val="Sheet2"/>
<sheetName val="Sheet3"/>
</sheetNames>
<sheetDataSet>
<sheetData sheetId="0">
<row r="7">
<cell r="C8">
<V>0</v>
</cell>
</row>
</sheetData>
<sheetData sheetId="1"/>
<sheetData sheetId="2"/>
</sheetDataSet>
</externalBook>
</externallLink>

This part's relationship item contains the following:

<Relationships ..>
<Relationship Id="rId1"
Type="../externalReference”

Target="wb2.x1lsx" TargetMode="External"/>

</Relationships>

SpreadsheetML

where wb2.xlsx is the workbook in which one or more cells' values are used in calculating the values of a cell in

workbook wb1. end example]

An External Workbook References part shall be located within the package containing the source relationship

(expressed syntactically, the TargetMode attribute of the Relationship element shall be Internal).

An External Workbook References part shall specify an explicit relationship to one or more this
StandardExternal Workbooks (§12.4).

An External Workbook References part shall not have any implicit or explicit relationships to other parts
defined by this Standard.

12.3.10 Metadata Part

Content Type:

application/vnd.openxmlformats-officedocument.spreadsheetml.sheetMetadata+xml

75

10
11
12

13

14

15

16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32

SpreadsheetML

Root http://schemas.openxmlformats.org/spreadsheetml|/2006/main

Namespace:

Source http://schemas.openxmlformats.org/officeDocument/2006/relationships/sheetMetadata
Relationship:

An instance of this part type contains information relating to a cell whose value is related to one or more other
cells via OnLine Analytical Processing (OLAP) technology.

A package shall contain no more than one Cell Metadata part, and that part shall be the target of an implicit
relationship from the Workbook part (§12.3.23).

[Example: The following Workbook part-relationship item contains a relationship to the Metadata part, which
is stored in the ZIP item metadata.xml. Cell B3 contains the formula CUBEMEMBER ("externalData",
"[Account].[All Account]"):

<Relationships xmlns="..">
<Relationship Id="rIdle"
Type="http://../sheetMetadata"” Target="metadata.xml"/>
</Relationships>

end example)
The root element for a part of this content type shall be metadata.
[Example: metadata.xml contains the following:

<metadata ..>
<metadataTypes count="1">
<metadataType name="XLMDX" minSupportedVersion="120000" copy="1"
pasteAll="1" pasteValues="1" merge="1" splitFirst="1" rowColShift="1"
clearFormats="1" clearComments="1" assign="1" coerce="1"/>
</metadataTypes>
<metadataStrings count="2">
<s v="externalData"/>
<s v="[Account].[All Account]"/>
</metadataStrings>
<mdxMetadata count="1">
<m n="@" f="m">
<t c="1">
<n v="1"/>
</t>
</m>
</mdxMetadata>

76

a U A~ W N

10
11
12
13
14
15

16

17
18
19
20
21
22
23
24
25
26
27

28

29
30
31
32
33
34
35
36

SpreadsheetML

<valueMetadata count="1">

<r t="1" v="0"/>

</valueMetadata>
</metadata>

The corresponding Connections part contains the following:

<connections ..>
<connection id="1" odcFile=".." keepAlive="1" name="externalData"
description=".." type="5" refreshedVersion="3" background="1">
<dbPr connection="Provider=MSOLAP.2;.." command="Budget" commandType="1"/>
<olapPr sendLocale="1" rowDrillCount="1000" serverFill="1"
serverNumberFormat="1" serverFont="1" serverFontColor="1"/>
</connection>

</connections>

The corresponding Volatile Dependencies part contains the following:

<volTypes ..">
<volType type="cubeFunctions">
<main first="externalData">

<tp t="e">
<V >HN/A< />
<stp>1</stp>
<r r="B3" s="1"/>
</tp>
</main>
</volType>
</volTypes>

The corresponding Pivot Table Cache Definition part contains the following:

<pivotCacheDefinition .. saveData="0" refreshedBy="..
refreshedDate="2005-11-28T16:55:44" backgroundQuery="1" createdVersion="3"
refreshedVersion="3" recordCount="0">
<cacheSource type="external" connectionID="1"/>
<cacheFields count="0"/>
<cacheHierarchies count="6">

</cacheHierarchies>

77

O 00 N OO s~ W N e

e e e
w N Rk O

14

15
16

17

18

19

20

21
22

23

24
25

26
27
28
29
30

SpreadsheetML

<kpis count="0"/>
<tupleCache>
<queryCache count="3">
<query mdx="[product].[category]"/>
<query mdx=""/>
<query mdx="[Account].[All Account]">
<tpls c="1">
<tpl hier="0" item="4294967295"/>
</tpls>
</query>
</queryCache>
</tupleCache>
</pivotCacheDefinition>

end example)

A Metadata part shall be located within the package containing the source relationship (expressed
syntactically, the TargetMode attribute of the Relationship element shall be Internal).

A Metadata part shall not have implicit or explicit relationships to any part defined by this Standard.

12.3.11 Pivot Table Part

Content Type: | application/vnd.openxmlformats-officedocument.spreadsheetml.pivotTable+xml
Root http://schemas.openxmlformats.org/spreadsheetml/2006/main

Namespace:

Source http://schemas.openxmlformats.org/officeDocument/2006/relationships/pivotTable
Relationship:

An instance of this part type contains a pivot table definition.

A package shall contain exactly one Pivot Table part per pivot table, and each such part shall be the target of
an implicit relationship in the relationship part for the Worksheet part (§12.3.24) that corresponds to the
worksheet containing the pivot table.

[Example: The following Worksheet part-relationship item contains a relationship to two Pivot Table parts,
which are stored in the ZIP items ../pivotTables/pivotTableN.xml:

<Relationships xmlns="..">
<Relationship Id="rId1"
Type="http://../pivotTable" Target="../pivotTables/pivotTablel.xml"/>
<Relationship Id="rId2"
Type="http://../pivotTable" Target="../pivotTables/pivotTable2.xml"/>
</Relationships>

78

O 00 N O Uu b

11
12
13
14
15
16
17
18
19
20
21
22
23
24
25

27

28
29

30

31

32

33

end example]

SpreadsheetML

The root element for a part of this content type shall be pivotTableDefinition.

[Example: pivotTablel.xml contains the following:

<pivotTableDefinition .. cache="4" applyNumberFormats="0" applyBorderFormats="0"

applyFontFormats="0" applyPatternFormats="0

applyAlignmentFormats="0"

applyWidthHeightFormats="1" dataCaption="Data" updatedVersion="3"
minRefreshableVersion="3" useAutoFormatting="1" itemPrintTitles="1"
createdVersion="3" indent="0" outline="1" outlineData="1">
<location ref="H4:H5" firstHeaderRow="1" firstDataRow="1" firstDataCol="0"/>
<pivotFields count="1">
<pivotField dataField="1" numFmtId="0" outline="1"
subtotalTop="1" showAll="0" measureFilter="0" sortType="manual"/>
</pivotFields>
<rowItems count="1">
<i t="data"/>
</rowItems>
<colItems count="1">
<i t="data"/>
</colltems>
<dataFields count="1">
<dataField name="Sum of 1000" f1ld="0" subtotal="average"
baseField="0" baseItem="0" numFmtId="0"/>
</dataFields>
<tableStyle name="TableStyle2" showRowHeaders="1" showColHeaders="1"

showRowStripes="1

showColStripes="1"/>

</pivotTableDefinition>

end example)

A Pivot Table part shall be located within the package containing the source relationship (expressed

syntactically, the TargetMode attribute of the Relationship element shall be Internal).

A Pivot Table part is permitted to have implicit relationships to the following parts defined by this Standard:

e Pivot Table Cache Definition (§12.3.12).

A Pivot Table part shall not have any implicit or explicit relationships to other parts defined by this Standard.

12.3.12 Pivot Table Cache Definition Part

Content Type: | application/vnd.openxmlformats-officedocument.spreadsheetml.pivotCacheDefinition+xml
Root http://schemas.openxmlformats.org/spreadsheetml|/2006/main
Namespace:

79

10
11
12

13

14

15

SpreadsheetML

Source http://schemas.openxmlformats.org/officeDocument/2006/relationships/pivotCacheDefinitio
Relationship: n

An instance of this part type contains a cache definition for a pivot table.

A package shall contain exactly one Pivot Table Cache Definition part per pivot table, and each such part shall
be the target of an implicit relationship from a Pivot Table (§12.3.11) part as well as an explicit relationship
from a Workbook (§12.3.23) part.

[Example: The following Pivot Table part-relationship item contains a relationship to the Pivot Table Cache
Definition part, which is stored in the ZIP item ../pivotCache/pivotCacheDefinition2.xml:

<Relationships xmlns="..">
<Relationship Id="rId1"
Type=http://../pivotCacheDefinition
Target="../pivotCache/pivotCacheDefinition2.xml"/>
</Relationships>

end example]
The root element for a part of this content type shall be pivotCacheDefinition.
[Example: pivotCacheDefinition2.xml contains the following:

<pivotCacheDefinition .. r:id="rIdl" refreshedBy="John Jones"
refreshedDate="2005-11-18T16:47:49" createdVersion="3"
refreshedVersion="3" recordCount="11">
<cacheSource type="worksheet">
<worksheet range="C4:C15" sheet="Sheetl"/>
</cacheSource>
<cacheFields count="1">
<cacheField name="1000">
<sharedItems containsSemiMixedTypes="0" containsString="0"
containsNumber="1" containsInteger="1" minValue="234
maxValue="2543"/>
</cacheField>
</cacheFields>
</pivotCacheDefinition>

end example]

A Pivot Table Cache Definition part shall be located within the package containing the source relationship
(expressed syntactically, the TargetMode attribute of the Relationship element shall be Internal).

80

10
11

12
13

14
15
16
17

18

19

20

21
22
23
24
25
26
27
28
29

SpreadsheetML
A Pivot Table Cache Definition part is permitted to have an explicit relationship to the following part defined by
this Standard:
e Pivot Table Cache Records (§12.3.13).

A Pivot Table Cache Definition part shall not have any implicit or explicit relationships to other parts defined by
this Standard.

12.3.13 Pivot Table Cache Records Part

Content Type: | application/vnd.openxmlformats-officedocument.spreadsheetml.pivotCacheRecords+xml

Root http://schemas.openxmlformats.org/spreadsheetml|/2006/main
Namespace:
Source http://schemas.openxmliformats.org/officeDocument/2006/relationships/spreadsheetml/piv

Relationship: | otCacheRecords

An instance of this part type contains the cache records for a pivot table.

A package shall contain exactly one Pivot Table Cache Records part per pivot table, and each such part shall be
the target of an explicit relationship in the Pivot Table Cache Definition (§12.3.12) part for the corresponding
pivot table.

[Example: The following Pivot Table Cache Definition part-relationship item contains a relationship to the Pivot
Table Cache Records part, which is stored in the ZIP item pivotCacheRecords2.xml:

<Relationships xmlns="..">
<Relationship Id="rId1"
Type="http://../pivotCacheRecords” Target="pivotCacheRecords2.xml"/>
</Relationships>

end example]
The root element for a part of this content type shall be pivotCacheRecords.
[Example: pivotCacheRecords2.xml contains the following:

<pivotCacheRecords .. count="11">
<r>
<n v="1234"/>
</r>
<r>
<n v="876"/>

</r>
</pivotCacheRecords>

81

10
11

12
13
14

15
16
17
18
19

20

21

22

23
24
25
26
27

SpreadsheetML

end example]

A Pivot Table Cache Records part shall be located within the package containing the source relationship
(expressed syntactically, the TargetMode attribute of the Relationship element shall be Internal).

A Pivot Table Cache Records part shall not have implicit or explicit relationships to any other part defined by
this Standard.

12.3.14 Query Table Part

Content Type: | application/vnd.openxmlformats-officedocument.spreadsheetml.queryTable+xml
Root http://schemas.openxmlformats.org/spreadsheetml|/2006/main

Namespace:

Source http://schemas.openxmliformats.org/officeDocument/2006/relationships/queryTable
Relationship:

An instance of this part type contains information that describes how the source table is connected to an
external data source, and defines the properties that is used when this table is refreshed from that source.

A package is permitted to contain one Query Table part per table, and each of those parts shall be the target of
an implicit relationship from the corresponding Table Definitions (§12.3.21) part.

[Example: The following Table part-relationship item contains a relationship to the Query Table part
corresponding to the connections details for that table. These parts are stored in the ZIP items
../queryTables/queryTablen.xml:

<Relationships xmlns="..">
<Relationship Id="rId1"
Type="http://../queryTable”
Target="../queryTables/queryTablel.xml"/>
</Relationships>

end example)
The root element for a part of this content type shall be queryTable.
[Example: queryTable2.xml deals with a connection to a database file having the seven fields shown:

<queryTable .. name="+Connect to New Data Source_1"
growShrinkType="insertDelete" connectionId="2" autoFormatId="16"
applyNumberFormats="0" applyBorderFormats="0" applyFontFormats="1"
applyPatternFormats="1" applyAlignmentFormats="0"
applyWidthHeightFormats="0">

82

O 00 N OO s~ W N e

S
N L, O

13

14
15

16

17

18

19
20

21
22

23
24

25
26
27
28

29

30

SpreadsheetML

<queryTableRefresh nextId="8">
<queryTableFields count="7">

<queryTableField
<queryTableField
<queryTableField
<queryTableField
<queryTableField
<queryTableField
<queryTableField
</queryTableFields>
</queryTableRefresh>
</queryTable>

end example]

id="1"
id=lI2ll
id=ll3ll

id="4"
id="5"
id="6"
id="7"

name="ACCOUNT" />
name="CHECKNUM" />
name="DATE" />
name="AMOUNT" />
name="PAYEE" />
name="CHARGECODE" />
name="DESCRIPT"/>

A Query Table part shall be located within the package containing the source relationship (expressed

syntactically, the TargetMode attribute of the Relationship element shall be Internal).

A Query Table part shall not have implicit or explicit relationships to any other part defined by this Standard.

12.3.15 Shared String Table Part

Content Type: | application/vnd.openxmlformats-officedocument.spreadsheetml.sharedStrings+xml
Root http://schemas.openxmlformats.org/spreadsheetml|/2006/main

Namespace:

Source http://schemas.openxmlformats.org/officeDocument/2006/relationships/sharedStrings
Relationship:

An instance of this part type contains one occurrence of each unique string that occurs on all worksheets in a

workbook.

A package shall contain exactly one Shared String Table part, and that part shall be the target of an implicit
relationship from the Workbook part (§12.3.23).

[Example: The following Workbook part-relationship item contains a relationship to the Shared String Table

part, which is stored in the ZIP item sharedStrings.xml:

<Relationships xmlns="..
<Relationship Id="rId

>
6"

Type="http://../sharedStrings" Target="sharedStrings.xml"/>

</Relationships>

end example]

The root element for a part of this content type shall be sst.

83

14

15
16

17
18

19

20

21
22

23
24

25
26

27
28
29
30
31

SpreadsheetML

[Example: Here are three of the six strings used in the worksheets:

<sst xmlns:st=".." .. totalCount="6" uniqueCount="6">
<sstItem>
<t>Expenses Log</t>
</sstItem>
<sstItem>
<t>Period Start</t>
</sstltem>
<sstItem>
<t>Period End</t>
</sstltem>

</sst>
end example]

A Shared String Table part shall be located within the package containing the source relationship (expressed
syntactically, the TargetMode attribute of the Relationship element shall be Internal).

A Shared String Table part shall not have implicit or explicit relationships to any other part defined by this
Standard.

12.3.16 Shared Workbook Revision Headers Part

Content Type: | application/vnd.openxmlformats-officedocument.spreadsheetml.revisionHeaders+xml
Root http://schemas.openxmlformats.org/spreadsheetml|/2006/main

Namespace:

Source http://schemas.openxmliformats.org/officeDocument/2006/relationships/revisionHeaders
Relationship:

An instance of this part type contains information about each of the editing sessions performed on the parent
workbook at the worksheet level (worksheets added and rearranged in each session).

A package shall contain at most one Shared Workbook Revision Headers part. If it exists, that part shall be the
target of an implicit relationship from the Workbook (§12.3.23) part.

[Example: The following Workbook part-relationship item contains a relationship to the Shared Workbook
Revision Headers part, which is stored in the ZIP item handout revisions/revisionHeaders.xml:

<Relationships xmlns="..">
<Relationship Id="rId9o"
Type="http://../revisionHeaders"
Target="revisions/revisionHeaders.xml"/>
</Relationships>

84

O 00 N O Uu b

11
12
13
14
15
16

18

19
20
21

22
23

24

25
26

27

28

29
30

SpreadsheetML

end example]
The root element for a part of this content type shall be headers.

[Example: revisionHeaders.xml contains the following:

<headers xmlns:r=".." guid="{233BEE23-EB5C-4542-905D-0230EFFED88B}"
diskRevisions="1" revisionId="4" version="3">
<header guid=".." dateTime="." maxSheetId="4" userName=".." r:id="rIdl">

<sheetIdMap count="3">

</sheetIdMap>
</header>

<header guid=".." dateTime=".." maxSheetId="4" userName=".." r:id="rId3">
<sheetIdMap count="3">

</sheetIdMap>
</header>
</headers>

end example]

A Shared Workbook Revision Headers part shall be located within the package containing the source
relationship (expressed syntactically, the TargetMode attribute of the Relationship element shall be
Internal).

A Shared Workbook Revision Headers part is permitted to have explicit relationships to the following parts
defined by this Standard:

e Shared Workbook Revision Log (§12.3.17)

A Shared Workbook Revision Headers part shall not have any implicit or explicit relationships to other parts
defined by this Standard.

12.3.17 Shared Workbook Revision Log Part

Content Type: | application/vnd.openxmlformats-officedocument.spreadsheetml.revisionLog+xml
Root http://schemas.openxmlformats.org/spreadsheetml|/2006/main

Namespace:

Source http://schemas.openxmlformats.org/officeDocument/2006/relationships/revisionLog
Relationship:

An instance of this part type contains information about edits performed on individual cells in the parent
workbook’s worksheets in each editing session.

85

O 00 N O

11
12

13

14

15

16
17
18
19
20
21
22
23
24
25
26
27
28
29

30

31
32

33
34

SpreadsheetML

A package shall contain one Shared Workbook Revision Log part for each session's set of changes, and those
parts shall be the target of an explicit relationship from the Shared Workbook Revision Headers (§12.3.16)
part.

[Example: The following Shared Workbook Revision Headers part-relationship item contains a number of
relationships to Shared Workbook Revision Log parts, which are stored in the ZIP item revisionLogN.xml:

<Relationships xmlns="..">
<Relationship Id="rId1"
Type="http://../revisionLog" Target="revisionLogl.xml"/>

<Relationship Id="rId6"
Type="http://../revisionLog" Target="revisionlLog6.xml"/>
</Relationships>

end example]
The root element for a part of this content type shall be revisions.

[Example: revisionLog2.xml contains the following:

<revisions xmlns:xs="." ..>
<rfmt sheetId="1" sqref="B4:B15">
<dxf>
<xs:fill>

<xs:pattern patternType="solid">
<xs:fgColor type="icv" val="64"/>
<xs:bgColor type="rgb" val="4278252287"/>
</xs:pattern>
</xs:fill>
</dxf>
</rfmt>
<rcv guid="{CBCE5672-5A4D-48C9-A120-F72804F8CF64}" action="delete"/>
<rcv guid="{CBCE5672-5A4D-48C9-A120-F72804F8CF64}" action="add"/>
</revisions>

end example]

A Shared Workbook Revision Log part shall be located within the package containing the source relationship
(expressed syntactically, the TargetMode attribute of the Relationship element shall be Internal).

A Shared Workbook Revision Log part shall not have implicit or explicit relationships to any other part defined
by this Standard.

86

10
11

12

13

14

15
16
17
18
19

20

21
22

23
24

25

SpreadsheetML

12.3.18 Shared Workbook User Data Part

Content Type: | application/vnd.openxmlformats-officedocument.spreadsheetml.userNames+xml
Root http://schemas.openxmliformats.org/spreadsheetml|/2006/main

Namespace:

Source http://schemas.openxmliformats.org/officeDocument/2006/relationships/usernames
Relationship:

An instance of this part type contains a list of all the users that are sharing the parent workbook.

A package shall contain at most one Shared Workbook User Data part, and that part shall be the target of an
implicit relationship in the Workbook (§12.3.23) part.

[Example: The following Workbook part-relationship item contains a relationship to the Shared Workbook User
Data part, which is stored in the ZIP item revisions/userNames.xml:

<Relationships xmlns="..">
Relationship Id="rId8"
Type="http://../usernames” Target="revisions/userNames.xml"/>

</Relationships>
end example)
The root element for a part of this content type shall be users.
[Example: userNames.xml shows that there are two users sharing this workbook:

<users .. count="2">
<usrinfo guid="{B5A024F7-40BE-4A48-9B6D-B1655241C84D}"
name="Mary Jones" id="-264292310" dateTime="2005-11-18T18:53:16"/>
<usrinfo ../>
</users>

end example)

A Shared Workbook User Data part shall be located within the package containing the source relationship
(expressed syntactically, the TargetMode attribute of the Relationship element shall be Internal).

A Shared Workbook User Data part shall not have implicit or explicit relationships to any other part defined by
this Standard.

12.3.19 Single Cell Table Definitions Part

Content Type: | application/vnd.openxmlformats-officedocument.spreadsheetml.tableSingleCells+xml

Root http://schemas.openxmlformats.org/spreadsheetml|/2006/main
Namespace:

87

10
11
12
13
14

15

16

17

18

19
20
21
22
23
24
25
26
27
28
29
30

31

32
33

SpreadsheetML

Source http://schemas.openxmlformats.org/officeDocument/2006/relationships/tableSingleCells
Relationship:

An instance of this part type contains information on how to map non-repeating elements from a custom XML
file into cells in a worksheet. [Note: Repeating custom XML elements are mapped using a Table (§12.3.21). end
note]

A package shall contain at most one Single Cell Table Definitions part per worksheet, and that part shall be the
target of an implicit relationship from a Worksheet (§12.3.24) part. A Single Cell Table Definitions part can
describe one or more single cell table definitions for any given worksheet.

[Example: The following Worksheet part-relationship item contains a relationship to the Single Cell Table
Definitions part, which is stored in the ZIP item ../tables/tableSingleCells1.xml:

<Relationships xmlns="..">
<Relationship Id="rId1"
Type="http://../tableSingleCells"
Target="../tables/tableSingleCellsl.xml"/>
</Relationships>

end example)
The root element for a part of this content type shall be singleCells.

[Example: A worksheet contains two single cell table definitions; e.g., ../tables/tableSingleCells1.xml contains
the following, where the elements id and count are nested inside element names:

<singleCells ..>
<singleCell id="1" name="Tablel" displayName="Tablel" ref="B4">
<cellPr id="1" uniqueName="id">
<xmlPr mapId="1" xpath="/names/id" xmlDataType="string"/>
</cellPr>
</singleCell>
<singleCell id="2" name="Table2" displayName="Table2" ref="B7">
<cellPr id="1" uniqueName="count">
<xmlPr mapId="1" xpath="/names/count” xmlDataType="integer"/>
</cellPr>
</singleCell>
</singleCells>

end example]

A Single Cell Table Definitions part shall be located within the package containing the source relationship
(expressed syntactically, the TargetMode attribute of the Relationship element shall be Internal).

88

10

11
12
13
14

15

16

17

19
20
21
22
23
24
25
26
27
28
29

SpreadsheetML

A Single Cell Table Definitions part shall not have implicit or explicit relationships to any other part defined by
this Standard.

12.3.20 Styles Part

Content Type: | application/vnd.openxmlformats-officedocument.spreadsheetml.styles+xml
Root http://schemas.openxmlformats.org/spreadsheetml|/2006/mains

Namespace:

Source http://schemas.openxmlformats.org/officeDocument/2006/relationships/styles
Relationship:

An instance of this part type contains all the characteristics for all the cells in the workbook. Such information
includes numeric and text formatting, alignment, font, color, and border.

A package shall contain no more than one Styles part, and that part shall be the target of an implicit
relationship from the Workbook (§12.3.23) part.

[Example: The following Workbook part-relationship item contains a relationship to the Styles part, which is
stored in the ZIP item styles.xml:

<Relationships xmlns="..">
<Relationship Id="rId5"
Type="http://../styles" Target="styles.xml"/>
</Relationships>

end example]
The root element for a part of this content type shall be styleSheet.
[Example:

<styleSheet xmlns=".">
<numFmts count="5">
<numFmt numFmtId="164" formatCode=""$"#,#i#0.00"/>
<numFmt numFmtId="165"
formatCode=""Yes" ;"Yes" ;"No""/>
<numFmt numFmtId="166"
formatCode="8" True" ;" True" ;"False""/>
<numFmt numFmtId="167"
formatCode="8" ;On" ;"On" ;"0ff""/>
<numFmt numFmtId="168"
formatCode="[$€-2]\ #,##0.00);[Red]\([$€-2]\ #,##0.00\)"/>
</numFmts>

89

O 00 N OO s~ W N e

T e =
A W N L O

15

16
17

18

19

20

21
22

23
24

25
26

27
28
29
30
31

SpreadsheetML

<fonts count="5">

</fonts>
<fills count="4">

</fills>
<borders count="1">

</borders>
<colors>

</colors>
</styleSheet>

end example]

A Styles part shall be located within the package containing the source relationship (expressed syntactically,
the TargetMode attribute of the Relationship element shall be Internal).

A Styles part shall not have implicit or explicit relationships to any other part defined by this Standard.

12.3.21 Table Definition Part

Content Type: | application/vnd.openxmlformats-officedocument.spreadsheetml.table+xml
Root http://schemas.openxmlformats.org/spreadsheetml|/2006/main

Namespace:

Source http://schemas.openxmliformats.org/officeDocument/2006/relationships/table
Relationship:

An instance of this part type contains a description of a single table and its autofilter information. (The data for
the table is stored in the corresponding Worksheet part.)

A package shall contain one Table Definition part per table, and each such part shall be the target of an implicit
relationship from the Worksheet (§12.3.24) part that corresponds to the worksheet containing that table.

[Example: The following Worksheet part-relationship item contains relationships to two Table Definition parts,
which are stored in the ZIP items ../tables/tableN.xml:

<Relationships xmlns="..">
<Relationship Id="rId2"
Type="http://../table" Target="../tables/tablel.xml"/>
<Relationship Id="rId3"
Type="http://../table" Target="../tables/table2.xml"/>
</Relationships>

90

O 00 N O Uu b

11
12
13

14
15

16
17
18
19
20
21
22

23

24
25

26

27

28
29

30

SpreadsheetML

end example]
The root element for a part of this content type shall be table.
[Example: table2.xml describes a table that spans a 2-column range of cells, F2:G19:

<table xmlns:af=".." .. id="2" name="Table2" displayName="Table2" ref="F2:G19"
totalsRowShown="0" headerRowDxfId="7">
<autoFilter ref="F2:G19"/>
<tableColumns count="2">
<tableColumn id="1" name="Salesman" dataDxfId="9" totalsRowDxfId="6"/>
<tableColumn id="2" name="Units" dataDxfId="8" totalsRowDxfId="5"/>
</tableColumns>
<tableStyle name="TableStyle2" showFirstColumn="0" showlLastColumn="0"
showRowStripes="1" showColumnStripes="1"/>
</table>

When the filter "Salesman equal to Smith" is applied, the autoFilter element in table2.xml is extended, as
follows:

<autoFilter ref="F2:G19">
<af:filterColumn colId="0">
<af:filters>
<af:filter val="Smith"/>
</af:filters>
</af:filterColumn>
</autoFilter>

end example)

A Table Definition part shall be located within the package containing the source relationship (expressed
syntactically, the TargetMode attribute of the Relationship element shall be Internal).

A Table Definition part is permitted to explicit relationships to the following parts defined by this Standard:
e Query Table (§12.3.14)

A Table Definition part shall not have any implicit or explicit relationships to any other part defined by this
Standard.

12.3.22 Volatile Dependencies Part

Content Type: | application/vnd.openxmlformats-officedocument.spreadsheetml.volatileDependencies+xml

Root http://schemas.openxmlformats.org/spreadsheetml|/2006/main
Namespace:

91

10
11

12

13

14

15

16

17
18

19
20

21

22

23

SpreadsheetML

Source http://schemas.openxmlformats.org/officeDocument/2006/relationships/volatileDependenci
Relationship: es

An instance of this part type contains information involving real-time data formulas in a workbook.

A package shall contain exactly one Volatile Dependencies part, and that part shall be the target of an implicit
relationship from the Workbook (§12.3.23) part.

[Example: The following Workbook part-relationship item contains a relationship to the Volatile Dependencies
part, which is stored in the ZIP item volatileDependencies.xml:

<Relationships xmlns="..">
<Relationship Id="rId8"
Type="http://../volatileDependencies”
Target="volatileDependencies.xml"/>
</Relationships>

end example)
The root element for a part of this content type shall be volTypes.
[Example:
<volTypes xmlns=".."/>
end example]

A Volatile Dependencies part shall be located within the package containing the source relationship (expressed
syntactically, the TargetMode attribute of the Relationship element shall be Internal).

A Volatile Dependencies part shall not have implicit or explicit relationships to any other part defined by this
Standard.

12.3.23 Workbook Part

Content application/vnd.openxmlformats-officedocument.spreadsheetml.main+xml

Type(s): application/vnd.openxmlformats-officedocument.spreadsheetml.template.main+xml

Root http://schemas.openxmlformats.org/spreadsheetml|/2006/main

Namespace:

Source http://schemas.openxmlformats.org/officeDocument/2006/relationships/officeDocument
Relationship:

An instance of this part type contains workbook data and references to all of its worksheets.

92

00 N o O

10

11

12
13
14
15
16
17
18
19
20
21
22
23
24
25
26

27

28
29

30

31

32

33

34

35

36

SpreadsheetML

A package shall contain exactly one Workbook part, and that part shall be the target of a relationship in the
package-relationship item.

[Example: The following SpreadsheetML package-relationship item contains a relationship to the Workbook
part, which is stored in the ZIP item xl/workbook.xml:

<Relationships xmlns="..">
<Relationship Id="rId1"
Type="http://../officeDocument” Target="x1l/workbook.xml"/>
</Relationships>

end example)
The root element for a part of this content type shall be workbook.

[Example: This workbook has three worksheets, named January, February, and March:

<workbook xmlns=".." xmlns:r="..">
<fileVersion lastEdited="4" lowestEdited="4" rupBuild="3417"/>
<bookViews>

<workbookView xWindow="240" yWindow="15" windowWidth="8505"
windowHeight="6240"/>

</bookViews>

<sheets>
<sheet name="January" tabId="1" r:id="rId1"/>
<sheet name="February" tabId="2" r:id="rId2"/>
<sheet name="March" tabId="3" r:id="rId3"/>

</sheets>

<workbookPr showObjects="all"/>

<webPublishing codePage="1252"/>

<calcPr calcId="122211" fullCalcOnLoad="1"/>

</workbook>

end example]

A Workbook part shall be located within the package containing the source relationship (expressed
syntactically, the TargetMode attribute of the Relationship element shall be Internal).

A Workbook part is permitted to have implicit relationships to the following parts defined by this Standard:

e Additional Characteristics (§15.2.1)
e Bibliography (§15.2.3)

e (Calculation Chain (§12.3.1)

e Cell Metadata (§12.3.10)

e Connections (§12.3.4)

e Custom XML Mappings (§12.3.6)

93

10

11

12

13

14

15

16

17

18
19

20
21
22

23
24

SpreadsheetML

e Custom XML Data Storage (§15.2.4)

e Shared String Table (§12.3.15)

e Shared Workbook Revision Headers (§12.3.16)
o Shared Workbook User Data (§12.3.18)

e Styles (§12.3.20)

e Theme (§14.2.7)

e Thumbnail (§15.2.14)

e Volatile Dependencies (§12.3.22)

A Workbook part is permitted to have explicit relationships to the following parts defined by this Standard:

e Chartsheet (§12.3.2)

e Dialogsheet (§12.3.7)

e External Workbook References (§12.3.8)
e Pivot Table Cache Definition (§12.3.12)
e Worksheet (§12.3.24)

A Workbook part shall not have implicit or explicit relationships to any other part defined by this Standard.

12.3.24 Worksheet Part

Content Type: | application/vnd.openxmlformats-officedocument.spreadsheetml|.worksheet+xml
Root http://schemas.openxmlformats.org/spreadsheetml|/2006/main

Namespace:

Source http://schemas.openxmlformats.org/officeDocument/2006/relationships/worksheet
Relationship:

An instance of this part type contains all the data, formulas, and characteristics associated with a given
worksheet.

A package shall contain exactly one Worksheet part per worksheet, and those parts shall be the target of an
explicit relationship from the Workbook (§12.3.23) part. Specifically, the id attribute on the sheet element
shall reference the desired worksheet part.

[Example: The following Workbook part-relationship item contains three relationships to Worksheet parts,
which are stored in the ZIP items worksheets/sheetN.xml:

94

0 N o b~ W N

10

11
12

13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40

SpreadsheetML

<Relationships xmlns="..">
<Relationship Id="rId1l"
Type="http://../worksheet" Target="worksheets/sheetl.xml"/>
<Relationship Id="rId2"
Type="http://../worksheet" Target="worksheets/sheet2.xml"/>
<Relationship Id="rId3"
Type="http://../worksheet" Target="worksheets/sheet3.xml"/>
</Relationships>

end example]
The root element for a part of this content type shall be worksheet.

[Example: This worksheet, has cells in the range B1 to F8. Row 8 contains three cells whose values are
calculated using the following formulas: D8=SUM(D5:D7), E8=SUM(E5:E7), and F8= D8-ES:

<worksheet xmlns="." .>
<sheetPr/>
<dimension range="B1:F8"/>

<sheetData>
<row r="1" spans="2:6" ht="360">
<c r="B1" s="1" t="s">
<v>0</v>
</c>
</row>

<row r="8" spans="2:6" ht="360">
<c r="D8" s="5">
<f>SUM(D5:D7)</F>
<v>2280.5299999999997</v>
</c>
<c r="E8" s="5">
<f>SUM(E5:E7)</F>
<v>1251.31</v>
</c>
<c r="F8" s="6">
<f>D8-E8</f>
<v>1029.2199999999998</v>
</c>
</row>
</sheetData>

</worksheet>

95

11

12

13

14

15

16

17

18

19

20

21
22
23

24

25

26
27

29
30
31
32

SpreadsheetML

end example]

A Worksheet part shall be located within the package containing the source relationship (expressed
syntactically, the TargetMode attribute of the Relationship element shall be Internal).

A Worksheet part is permitted to contain implicit relationships to the following parts defined by this Standard:

e Comments (§12.3.3)

e Pivot Table Definitions (§12.3.11)

e Printer Settings (§15.2.14)

o Single Cell Table Definitions (§12.3.19)
e Table Definition (§12.3.21)

A Worksheet part is permitted to contain explicit relationships to the following parts defined by this Standard:

e Drawings (§12.3.8)

e Embedded Control Persistence (§15.2.8)
e Embedded Object (§15.2.9)

e Embedded Package (§15.2.10)

e Hyperlinks (§15.3)

e Images (§15.2.13)

e VML Drawing (§15.2.17)

A Worksheet part shall not have implicit or explicit relationships to any other part defined by this Standard.

12.4 External Workbooks

Source http://schemas.openxmlformats.org/officeDocument/2006/relationships/externalLinkPath
Relationship:

An external workbook is a SpreadsheetML package whose contents are being referenced by the current
SpreadsheetML package. When a package refers to external workbooks, it shall store the location of those
workbooks using this relationship.

A package is permitted to contain one or more External Workbook relationships, and those relationships shall
be an explicit relationship from the External Workbook References (§12.3.9) part.

[Example: An External Workbook References part, which references the package c:\sourceData.xIsx would
have an External Workbook relationship, which points at that file:

<Relationships xmlns="..">
<Relationship Id="rId1"
Type="http://../externalLinkPath"
Target="c:\sourceData.xlsx" TargetMode="External"/>
</Relationships>

96

SpreadsheetML

1 end example]

2 Aexternal workbook shall be located external to the package containing the source relationship (expressed
3 syntactically, the TargetMode attribute of the Relationship element shall be External).

97

10
11

12

13

14

15

16

17

18
19

20

21

22
23
24

25

26

27
28

PresentationML

13. PresentationML

This clause contains specifications for relationship items and parts that are specific to PresentationML. Parts
than can occur in a PresentationML document, but are not PresentationML-specific, are specified in §15.2.
Unless stated explicitly, all references to relationship items, content-type items, and parts in this clause refer
to PresentationML ZIP items.

13.1 Glossary of PresentationML-Specific Terms

The following terms are used in the context of a PresentationML document:

comment — A note that an author or reviewer attaches to a piece of text in a document. Although a consumer
may chose to display comments, they are not considered part of the body of the document. A comment
includes the text of the note, the comment author's name and initials, and date of creation, among other
things.

handout — A printed set of slides that can be handed out to an audience for future reference.
note — A slide annotation, reminder, or piece of text intended for the presenter or the audience.
presentation — A collection of slides intended to be viewed by an audience.

slide — A frame containing one or more pieces of text and/or images.

slide layout — The organization of elements on a slide.

13.2 Package Structure

A PresentationML package shall contain a package-relationship item and a content-type item. The package-
relationship item shall contain implicit relationships with targets of the following type:

e One Presentation part (§13.3.6).
The package-relationship item is permitted to contain implicit relationships with targets of the following type:

e Digital Signature Origin (§15.2.6)

e File Property parts (§15.2.11) (Application-Defined File Properties, Core File Properties, and Custom
File Properties), as appropriate.

e Thumbnail (§15.2.14).

The required and optional relationships between parts are defined in §13.3 and its subordinate clauses.

[Example: The following package represents the minimal conformant PresentationML package as defined by
this Standard:

98

O 00 N o U A~ W

10

11
12

13
14
15
16
17
18

19
20

21
22
23

24

25
26
27

28
29
30
31
32
33
34
35
36

PresentationML

First, the content type for relationship parts and the Main Presentation part (the only required part) must be
defined (physically located at /[Content_Types].xml in the package):

<Types xmlns=".">
<Default Extension="rels"
ContentType="application/vnd.openxmlformats-
package.relationships+xml"/>
<Override PartName="/presentation.xml"
ContentType="application/vnd.openxmlformats-
officedocument.presentationml.presentation.main+xml"/>
</Types>

Next, the single required relationship (the package-level relationship to the Main Presentation part) must be
defined (physically located at /_rels/.rels in the package):

<Relationships xmlns="..">
<Relationship Id="rId1l"
Type="http://schemas.openxmlformats.org/officeDocument/2006/
relationships/officeDocument”
Target="presentation.xml"/>
</Relationships>

Finally, the minimum content for the Main Presentation part must be defined (physically located at
/presentation.xml in the package):

<p:presentation xmlns:p="..">
<p:notesSz cx="913607" cy="913607"/>
</p:presentation>

end example)

[Example: Consider a simple PresentationML document containing two slides, which both use an image as a
template. Here’s an example of the hierarchical folder structure that might be used for the ZIP items in the
package for that document. As shown, a number of parts have their own relationship items:

/_rels/.rels Package-relationship item
/[Content_Types].xml Content-type item
/docProps/app.xml Application-Defined File
Properties part

/docProps/core.xml Core File Properties part
/docProps/custom.xml Custom File Properties part
/docProps/thumbnail . wmf Package thumbnail image
/ppt/presentation.xml Presentation part
/ppt/_rels/presentation.xml.rels Part-relationship item

99

O 00 N OO s~ W N e

w W W W W W W W W N N N N NN N N N NN PP R R R, R, R, R, R
00 N o U b~ W N P O LV 0 N O U A W N P O L 0 N o un A W N = O

/ppt/presProps.xml
/ppt/tableStyles.xml
/ppt/viewProps.xml

/ppt/handoutMasters/handoutMasterl.xml
/ppt/handoutMasters/ rels/handoutMasterl.xml.rels

/ppt/media/imagel. jpeg
/ppt/notesMasters/notesMasterl.xml

PresentationML

Presentation Properties part
Table Styles part

View Properties part

Handout Master part

Part-relationship item
Slide template image
Notes Master part

/ppt/notesMasters/_rels/notesMasterl.xml.rels

/ppt/notesSlides/notesSlidel.xml
/ppt/notesSlides/notesSlide2.xml

Part-relationship item
Notes Slide parts

/ppt/notesSlides/ _rels/notesSlidel.xml.rels

Part-relationship items

/ppt/notesSlides/ rels/notesSlide2.xml.rels

/ppt/slidelLayouts/slidelLayoutl.xml
/ppt/slidelLayouts/slidelayout2.xml
/ppt/slideLayouts/slidelayout3.xml
/ppt/slideLayouts/slidelLayout4.xml
/ppt/slidelLayouts/slidelLayout5.xml
/ppt/slidelLayouts/slidelLayout6.xml

/ppt/slideLayouts/_rels/slidelayoutl.

/ppt/slidelLayouts/ rels/slidelayout2.

/ppt/slideLayouts/_rels/slidelayout3

/ppt/slidelLayouts/_rels/slidelayout4.
/ppt/slidelLayouts/ rels/slidelayout5.
/ppt/slidelLayouts/ rels/slidelayout6.

/ppt/slideMasters/slideMasterl.xml
/ppt/slideMasters/_rels/slideMasterl

/ppt/slides/slidel.xml
/ppt/slides/slide2.xml
/ppt/slides/ rels/slidel.xml.rels
/ppt/slides/ rels/slide2.xml.rels
/ppt/theme/themel.xml
/ppt/theme/theme2.xml
/ppt/theme/theme3. xml

xml.

xml.
.xml.
xml.
xml.
xml.

.xml.

Slide Layout parts 1-6

rels
Part-relationship items
rels
rels
rels
rels
rels
Slide Master part
rels
Part-relationship item
Slide parts

Part-relationship items

Theme parts

100

O 00 N OO s~ W N e

=
o

12
13
14
15
16
17
18
19
20

22

23

24

25

/ppt/theme/themeOverridel.xml
/ppt/theme/themeOverride2.xml
/ppt/theme/themeOverride3.xml
/ppt/theme/themeOverride4.xml
/ppt/theme/themeOverride5.xml
/ppt/theme/themeOverride6.xml
/ppt/theme/themeOverride7.xml
/ppt/theme/themeOverride8.xml
/ppt/theme/themeOverride9.xml
/ppt/theme/themeOverridel.xml

The package-relationship item contains the following:

<Relationships xmlns=

w >

<Relationship Id="rId1"
Type="http://../officeDocument” Target="ppt/presentation.xml"/>
<Relationship Id="rId3"
Type="http://../core-properties" Target="docProps/core.xml"/>
<Relationship Id="rId2"
Type="http://../thumbnail” Target="docProps/thumbnail.wmf"/>
<Relationship Id="rId4"

Type="http://../extended-properties"” Target="docProps/app.xml"/>

</Relationships>

end example]

13.3

Part Summary

Theme Override parts

PresentationML

The subclauses subordinate to this one describe in detail each of the part types specific to PresentationML.

[Note: For convenience, information from those subclauses is summarized in the following table:

Part Relationship Target of Root Element Ref.
Comment Authors Presentation cmAuthorLst §13.3.1
Comments Slide cmLst §13.3.2
Handout Master Presentation handoutMaster | §13.3.3
Notes Master Notes Slide, Presentation notesMaster §13.3.4
Notes Slide Slide notes §13.3.5
Presentation PresentationML package presentation §13.3.6
Presentation Presentation presentationPr | §13.3.7
Properties
Slide Presentation sld §13.3.8

101

10
11

12
13
14
15

16

17

18
19
20

PresentationML

Part Relationship Target of Root Element Ref.
Slide Layout Slide Master, Notes Slide, sldLayout §13.3.9
Presentation, Slide, Slide
Master
Slide Master Presentation, Slide Layout sldMaster §13.3.10
Slide Synchronization | Slide sldSyncPr §13.3.11
Data
User-Defined Tags Presentation, Slide tagLst §13.3.12
View Properties Presentation viewPr §13.3.13
end note]

13.3.1 Comment Authors Part

Content Type: | application/vnd.openxmlformats-officedocument.presentationml.commentAuthors+xml
Root http://schemas.openxmlformats.org/presentationml/2006/main

Namespace:

Source http://schemas.openxmlformats.org/officeDocument/2006/relationships/commentAuthors
Relationship:

An instance of this part type contains information about each author who has added a comment to the
document. That information includes the author's name, initials, a unique author-ID, a last-comment-index-
used count, and a display color. (The color can be used when displaying comments to distinguish comments
from different authors.)

A package shall contain at most one Comment Authors part. If it exists, that part shall be the target of an
implicit relationship from the Presentation (§13.3.6) part.

[Example: The following Presentation part relationship item contains a relationship to the Comment Authors
part, which is stored in the ZIP item commentAuthors.xml:

<Relationships xmlns="..">
<Relationship Id="rId8"
Type="http://../commentAuthors"” Target="commentAuthors.xml"/>

</Relationships>
end example]
The root element for a part of this content type shall be cmAuthorLst.

[Example: Two people have authored comments in this document: Mary Smith and Peter Jones. Her initials are
"mas", her author-ID is 0, and her comments' display color index is 0. Since Mary's last-comment-index-used
value is 3, the next comment-index to be used for her will be 4. His initials are "pjj", his author-ID is 1, and his

102

0 N o U1 b~ w

10
11

12
13

14

15

16
17

18
19

20
21

22
23
24
25
26

27

28

PresentationML

comments' display color index is 1. Since Peter's last-comment-index-used value is 1, the next comment-index
to be used for him will be 2:

<p:cmAuthorLst xmlns:p="." ..>
<p:cmAuthor id="0" name="Mary Smith" initials="mas" lastIdx="3"
clrIdx="0"/>
<p:cmAuthor id="1" name="Peter Jones" initials="pjj" lastIdx="1"
clrIdx="1"/>

</p:cmAuthorLst>
end example]

A Comment Authors part shall be located within the package containing the source relationship (expressed
syntactically, the TargetMode attribute of the Relationship element shall be Internal).

A Comment Authors part shall not have implicit or explicit relationships to any other part defined by this
Standard.

13.3.2 Comments Part

Content Type: | application/vnd.openxmlformats-officedocument.presentationml.comments+xml
Root http://schemas.openxmliformats.org/presentationml/2006/main

Namespace:

Source http://schemas.openxmliformats.org/officeDocument/2006/relationships/comments
Relationship:

An instance of this part type contains the comments for a single slide. Each comment is tied to its author via an
author-ID. Each comment's index number and author-ID combination are unique.

A package shall contain one Comments part for each slide containing one or more comments, and each of
those parts shall be the target of an implicit relationship from its corresponding Slide (§13.3.8) part.

[Example: The following Slide part-relationship item contains a relationship to a Comments part, which is
stored in the ZIP item ../comments/comment2.xml:

<Relationships xmlns="..">
<Relationship Id="rId4"
Type="http://../comments"”
Target="../comments/comment2.xml"/>
</Relationships>

end example]

The root element for a part of this content type shall be cmLst .

103

2

O 00 N o Uu b

11
12
13
14
15
16

18

19
20

21

22

23

24
25

26
27

28
29

PresentationML

[Example: The Comments part contains three comments, two created by one author, and one created by
another, all at the dates and times shown. The index numbers are assigned on a per-author basis, starting at 1
for an author's first comment:

<p:cmLst xmlns:p="." ..>
<p:cm authorId="0" dt="2005-11-13T17:00:22.071" idx="1">
<p:pos x="4486" y="1342"/>
<p:text>Comment text goes here.</p:text>
</p:cm>
<p:cm authorId="0" dt="2005-11-13T17:00:34.849" idx="2">
<p:pos x="3607" y="1867"/>
<p:text>Another comment's text goes here.</p:text>
</p:cm>
<p:cm authorId="1" dt="2005-11-15T00:06:46.919" idx="1">
<p:pos x="1493" y="2927"/>
<p:text>comment ..</p:text>
</p:cm>
</p:cmLst>

end example]

A Comments part shall be located within the package containing the source relationship (expressed
syntactically, the TargetMode attribute of the Relationship element shall be Internal).

A Comments part shall not have implicit or explicit relationships to any other part defined by this Standard.

13.3.3 Handout Master Part

Content Type: | application/vnd.openxmlformats-officedocument.presentationml.handoutMaster+xml
Root http://schemas.openxmlformats.org/presentationml/2006/main

Namespace:

Source http://schemas.openxmliformats.org/officeDocument/2006/relationships/handoutMaster
Relationship:

An instance of this part type contains the look, position, and size of the slides, notes, header and footer text,
date, or page number on the presentation's handout.

A package shall contain at most one Handout Master part, and it shall be the target of an explicit relationship
from the Presentation (§13.3.6) part.

[Example: The following Presentation part-relationship item contains a relationship to the Handout Master
part, which is stored in the ZIP item handoutMasters/handoutMasterl.xml:

104

(\=]

10
11
12
13

15

16
17

18
19

20

21

22

23

24

27
28
29
30
31
32
33
34

35

PresentationML

<Relationships xmlns="..">
<Relationship Id="rId5"
Type="http://../handoutMaster"
Target="handoutMasters/handoutMasterl.xml"/>
</Relationships>

end example)
The root element for a part of this content type shall be handoutMaster.

[Example:

<p:handoutMaster xmlns:p="..">
<p:cS1ld name="">

</p:cSld>
<p:clrMap .. />
</p:handoutMaster>

end example)

A Handout Master part shall be located within the package containing the source relationship (expressed
syntactically, the TargetMode attribute of the Relationship element shall be Internal).

A Handout Master part is permitted to have implicit relationships to the following parts defined by this
Standard:

e Additional Characteristics (§15.2.1)
e Bibliography (§15.2.3)

e Custom XML Data Storage (§15.2.4)
e Theme (§14.2.7)

e Thumbnail (§15.2.14)

A Handout Master part is permitted to have explicit relationships to the following parts defined by this
Standard:

e Audio (§15.2.2)

e Chart(§14.2.1)

e Diagrams: Diagram Colors(§14.2.3), Diagram Data(§14.2.4), Diagram Layout Definition(§14.2.5) and
Diagram Styles (§14.2.6)

e Embedded Control Persistence (§15.2.8)

e Embedded Object (§15.2.9)

e Embedded Package (§15.2.10)

e Hyperlink (§15.3)

e Image (§15.2.13)

105

10

11
12

13
14
15
16

17

18

19

26

27

PresentationML

e Video (§15.2.14)
e VML Drawing (§15.2.17)

A Handout Master part shall not have implicit or explicit relationships to any other part defined by this
Standard.

13.3.4 Notes Master Part

Content Type: | application/vnd.openxmlformats-officedocument.presentationml.notesMaster+xml
Root http://schemas.openxmliformats.org/presentationml/2006/main

Namespace:

Source http://schemas.openxmlformats.org/officeDocument/2006/relationships/notesMaster
Relationship:

An instance of this part type contains information about the content and formatting of all notes pages.

A package shall contain at most one Notes Master part, and that part shall be the target of an implicit
relationship from the Notes Slide (§13.3.5) part, as well as an explicit relationship from the Presentation
(§13.3.6) part.

[Example: The following Presentation part-relationship item contains a relationship to the Notes Master part,
which is stored in the ZIP item notesMasters/notesMasterl.xml:

<Relationships xmlns="..">
<Relationship Id="rId4"
Type="http://../notesMaster" Target="notesMasters/notesMasterl.xml"/>
</Relationships>

end example]
The root element for a part of this content type shall be notesMaster.
[Example:

<p:notesMaster xmlns:p="..">
<p:cSld name="">

</p:cSld>

<p:clrMap .. />
</p:notesMaster>
end example]

A Notes Master part shall be located within the package containing the source relationship (expressed
syntactically, the TargetMode attribute of the Relationship element shall be Internal).

106

10
11
12
13
14
15
16
17

18

19
20

21

22

23

24
25

26
27

PresentationML

A Notes Master part is permitted to have implicit relationships to the following parts defined by this Standard:

e Additional Characteristics (§15.2.1)
e Bibliography (§15.2.3)

e Custom XML Data Storage (§15.2.4)
o Theme (§14.2.7)

e Thumbnail (§15.2.14)

A Notes Master part is permitted to have explicit relationships to the following parts defined by this Standard:

o Audio (§15.2.2)

e Chart (§14.2.1)

e Diagrams: Diagram Colors(§14.2.3), Diagram Data(§14.2.4), Diagram Layout Definition(§14.2.5) and
Diagram Styles (§14.2.6)

e Embedded Control Persistence (§15.2.8)

e Embedded Object (§15.2.9)

e Embedded Package (§15.2.10)

e Hyperlink (§15.3).

e Image (§15.2.13)

e Video (§15.2.14)

e VML Drawing (§15.2.17)

The Notes Master part shall not have implicit or explicit relationships to any other part defined by this
Standard.

13.3.5 Notes Slide Part

Content Type: | application/vnd.openxmlformats-officedocument.presentationml.notesSlide+xml
Root http://schemas.openxmliformats.org/presentationml/2006/main

Namespace:

Source http://schemas.openxmliformats.org/officeDocument/2006/relationships/notesSlide
Relationship:

An instance of this part type contains the notes for a single slide.

A package shall contain one Notes Slide part for each slide that contains notes. If they exist, those parts shall
each be the target of an implicit relationship from the Slide (§13.3.8) part.

[Example: The following Slide part-relationship item contains a relationship to a Notes Slide part, which is
stored in the ZIP item ../notesSlides/notesSlide1.xml:

107

o

10
11
12
13
14

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

PresentationML

<Relationships xmlns=".">
<Relationship Id="rId3"
Type="http://../notesSlide" Target="../notesSlides/notesSlidel.xml"/>
</Relationships>

end example]
The root element for a part of this content type shall be notes.

[Example:

<p:notes xmlns:p=".">
<p:cSld name="">

</p:cSld>
<p:clrMapOvr>
<a:masterClrMapping/>
</p:clrMapOvr>
</p:notes>

end example)

A Notes Slide part shall be located within the package containing the source relationship (expressed
syntactically, the TargetMode attribute of the Relationship element shall be Internal).

A Notes Slide part is permitted to have implicit relationships to the following parts defined by this Standard:

e Additional Characteristics (§15.2.1)
e Bibliography (§15.2.3)

e Custom XML Data Storage (§15.2.4)
e Notes Master (§13.3.4)

e Theme Override(§14.2.8)

e Thumbnail (§15.2.14)

A Notes Slide part is permitted to have explicit relationships to the following parts defined by this Standard:

e Audio (§15.2.2)

e Chart(§14.2.1)

e Diagrams: Diagram Colors(§14.2.3), Diagram Data(§14.2.4), Diagram Layout Definition(§14.2.5) and
Diagram Styles (§14.2.6)

e Embedded Control Persistence (§15.2.8)

e Embedded Object (§15.2.9)

e Embedded Package (§15.2.10)

e Hyperlink (§15.3).

e Image (§15.2.13)

108

10

11
12
13
14

15

16

17

18
19
20
21
22
23
24
25
26

PresentationML

e Video (§15.2.14)
e VML Drawing (§15.2.17)

The Notes Slide part shall not have implicit or explicit relationships to any other part defined by this Standard.

13.3.6 Presentation Part

Content Type: | application/vnd.openxmlformats-officedocument.presentationml.presentation.main+xml
application/vnd.openxmlformats-officedocument.presentationml.slideshow.main+xml
application/vnd.openxmlformats-officedocument.presentationml.template.main+xml

Root http://schemas.openxmlformats.org/presentationml/2006/main

Namespace:

Source http://schemas.openxmliformats.org/officeDocument/2006/relationships/officeDocument
Relationship:

An instance of this part type contains the definition for a slide presentation.

A package shall contain exactly one Presentation part, and that part shall be the target of a relationship in the
package-relationship item.

[Example: The following PresentationML's package-relationship item contains a relationship to the
Presentation part, which is stored in the ZIP item ppt/presentation.xml:

<Relationships xmlns="..">
<Relationship Id="rId1"
Type="http://../officeDocument” Target="ppt/presentation.xml"/>
</Relationships>

end example)
The root element for a part of this content type shall be presentation.

[Example: This presentation contains two slides:

<p:presentation xmlns:p=".." .. >
<p:sldMasterIdLst>
<p:sldMasterlId
xmlns:rel="http://../relationships"” rel:id="rId1"/>
</p:sldMasterIdLst>
<p:notesMasterIdLst>
<p:notesMasterlId
xmlns:rel="http://../relationships"” rel:id="rId4"/>
</p:notesMasterIdLst>

109

O 00 N OO s~ W N e

e e e
w N Rk O

14

15
16

17

18

19

20

21

22

23

24

25

26

27

29

30

31

32

33

34

PresentationML

<p:handoutMasterIdLst>
<p:handoutMasterld
xmlns:rel="http://../relationships” rel:id="rId5"/>
</p:handoutMasterIdLst>
<p:sldIdLst>
<p:sldId id="267"
xmlns:rel="http://../relationships" rel:id="rId2"/>
<p:sldId id="256"
xmlns:rel="http://../relationships" rel:id="rId3"/>
</p:sldIdLst>
<p:sldSz cx="9144000" cy="6858000"/>
<p:notesSz cx="6858000" cy="9144000"/>
</p:presentation>

end example)

A Presentation part shall be located within the package containing the source relationship (expressed
syntactically, the TargetMode attribute of the Relationship element shall be Internal).

A Presentation part is permitted to have implicit relationships to the following parts defined by this Standard:

e Additional Characteristics (§15.2.1)
e Comments (§13.3.2)

e Bibliography (§15.2.3)

e Custom XML Data Storage (§15.2.4)
e Font(§15.2.12)

e Presentation Properties (§13.3.7)

e Table Styles (§14.2.9)

e Theme (§14.2.7)

e Thumbnail (§15.2.14)

e View Properties (§13.3.13).

A Presentation part is permitted to have explicit relationships to the following parts defined by this Standard:

e Notes Master (§13.3.4)

e Handout Master (§13.3.3)

e Slide (§13.3.8)

e Slide Layout (§13.3.9)

e Slide Master (§13.3.10)

e User Defined Tags (§13.3.12)

110

10
11

12

13

14

15
16
17
18
19
20

21

22
23

24
25

26

PresentationML

13.3.7 Presentation Properties Part

Content Type: | application/vnd.openxmlformats-
officedocument.presentationml.presentationProperties+xml

Root http://schemas.openxmliformats.org/presentationml/2006/main

Namespace:

Source http://schemas.openxmliformats.org/officeDocument/2006/relationships/presProps
Relationship:

An instance of this part type contains all the presentation's properties.

A package shall contain exactly one Presentation Properties part, and that part shall be the target of an implicit
relationship from the Presentation (§13.3.6) part.

[Example: The following Presentation part-relationship item contains a relationship to the Presentation
Properties part, which is stored in the ZIP item presProps.xmil:

<Relationships xmlns="..">
<Relationship Id="rIdé6"
Type="http://../presProps"” Target="presProps.xml"/>
</Relationships>

end example]
The root element for a part of this content type shall be presentationPr.
[Example:

<p:presentationPr xmlns:p="." ..>
<p:clrMru>

</p:clrMru>

</p:presentationPr>
end example]

A Presentation Properties part shall be located within the package containing the source relationship
(expressed syntactically, the TargetMode attribute of the Relationship element shall be Internal).

A Presentation Properties part shall not have implicit or explicit relationships to any other part defined by this
Standard.

13.3.8 Slide Part

Content Type: | application/vnd.openxmlformats-officedocument.presentationml.slide+xml

111

10
11
12
13

14

15

16

17
18
19
20
21
22
23
24
25
26
27
28
29
30
31

32

PresentationML

Root http://schemas.openxmlformats.org/presentationml/2006/main

Namespace:

Source http://schemas.openxmlformats.org/officeDocument/2006/relationships/slide
Relationship:

A Slide part contains the contents of a single slide.

A package shall contain one Slide part per slide, and each of those parts shall be the target of an explicit
relationship from the Presentation (§13.3.6) part.

[Example: Consider a PresentationML document having two slides. The corresponding Presentation part-
relationship item contains two relationships to Slide parts, which are stored in the ZIP items slides/slide1.xml
and slides/slide2.xml:

<Relationships xmlns="..">
<Relationship Id="rId2"
Type="http://../slide" Target="slides/slidel.xml"/>
<Relationship Id="rId3"
Type="http://../slide" Target="slides/slide2.xml"/>
</Relationships>

end example)
The root element for a part of this content type shall be sld.
[Example: slides/slide1.xml contains:

<p:sld xmlns:p="..">
<p:cSld name="">

</p:cSld>
<p:clrMapOvr>

</p:clrMapOvr>
<p:timing>
<p:tnLst>
<p:par>
<p:cTn id="1" dur="indefinite" restart="never" nodeType="tmRoot"/>
</p:par>
</p:tnLst>
</p:timing>
</p:sld>

end example]

112

10

11

12

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29
30
31

PresentationML

A Slide part shall be located within the package containing the source relationship (expressed syntactically, the
TargetMode attribute of the Relationship element shall be Internal).

A Slide part is permitted to have implicit relationships to the following parts defined by this Standard:

e Additional Characteristics (§15.2.1)

e Bibliography (§15.2.3)

e Comments (§12.3.3)

e Custom XML Data Storage (§15.2.4)
e Notes Slide (§13.3.5)

e Theme Override (§14.2.8)

e Thumbnail (§15.2.14)

e Slide Layout (§13.3.9)

e Slide Synchronization Data (§13.3.11)

A Slide part is permitted to have explicit relationships to the following parts defined by this Standard:

e Audio (§15.2.2)

e (Chart(§14.2.1)

e Diagrams: Diagram Colors(§14.2.3), Diagram Data(§14.2.4), Diagram Layout Definition(§14.2.5) and
Diagram Styles (§14.2.6)

e Embedded Control Persistence (§15.2.8)

e Embedded Object (§15.2.9)

e Embedded Package (§15.2.10)

e Hyperlink (§15.3).

e Image (§15.2.13)

e User Defined Tags (§13.3.12)

e Video (§15.2.14)

e VML Drawing (§15.2.17)

A Slide part shall not have implicit or explicit relationships to any other part defined by this Standard.

13.3.9 Slide Layout Part

Content Type: | application/vnd.openxmlformats-officedocument.presentationml.slideLayout+xml
Root http://schemas.openxmlformats.org/presentationml/2006/main

Namespace:

Source http://schemas.openxmlformats.org/officeDocument/2006/relationships/slideLayout
Relationship:

An instance of this part type contains the definition for a slide layout template for this presentation. This
template defines the default appearance and positioning of drawing objects on this slide type when it is
created.

113

O 00 N O

11
12
13
14
15
16

17

18

19

20
21
22
23
24
25
26
27
28
29

30

31

32

33

34

35

36

PresentationML

A package shall contain one or more Slide Layout parts, and those parts shall be the target of an explicit
relationship in the Presentation (§13.3.6) part, as well as an implicit relationship from the Slide Master
(813.3.10) part associated with this slide layout.

[Example: The following Slide Master part-relationship item contains relationships to several Slide Layout
parts, which are stored in the ZIP items ../slideLayouts/slideLayoutN.xml:

<Relationships xmlns="..">
<Relationship Id="rId1"
Type="http://../slidelLayout™
Target="../slidelLayouts/slideLayoutl.xml"/>
<Relationship Id="rId2"
Type="http://../slidelLayout™
Target="../slidelayouts/slidelLayout2.xml"/>
<Relationship Id="rId3"
Type="http://../slidelLayout”
Target="../slidelLayouts/slidelLayout3.xml"/>
</Relationships>

end example]
The root element for a part of this content type shall be sldLayout.
[Example:

<p:sldLayout xmlns:p=".." matchingName=
<p:cSld name="Title Slide">

type="title" preserve="1">

</p:cSld>
<p:clrMapOvr>
<a:masterClrMapping/>
</p:clrMapOvr>
<p:timing/>
</p:sldLayout>
</p:sldMaster>

end example]
A Slide Layout part is permitted to have implicit relationships to the following parts defined by this Standard:

e Additional Characteristics (§15.2.1)
e Bibliography (§15.2.3)

e Custom XML Data Storage (§15.2.4)
e Slide Master (§13.3.10)

e Theme Override (§14.2.8)

114

10

11

12

13

14

15

16

17
18

19
20
21
22

23
24

25
26
27
28

29

PresentationML

e Thumbnail (§15.2.14)
A Slide Layout part is permitted to have explicit relationships to the following parts defined by this Standard:

o Audio (§15.2.2)

e Chart(§14.2.1)

e Diagrams: Diagram Colors(§14.2.3), Diagram Data(§14.2.4), Diagram Layout Definition(§14.2.5) and
Diagram Styles (§14.2.6)

e Embedded Control Persistence (§15.2.8)

e Embedded Object (§15.2.9)

e Embedded Package (§15.2.10)

e Hyperlink (§15.3).

e Image (§15.2.13)

e Video (§15.2.14)

e VML Drawing (§15.2.17)

A Slide Layout part shall not have implicit or explicit relationships to any other part defined by this Standard.

13.3.10 Slide Master Part

Content Type: | application/vnd.openxmlformats-officedocument.presentationml.slideMaster+xml|
Root http://schemas.openxmlformats.org/presentationml/2006/main

Namespace:

Source http://schemas.openxmlformats.org/officeDocument/2006/relationships/slideMaster
Relationship:

An instance of this part type contains the master definition of formatting, text, and objects that appear on
each slide in the presentation that is derived from this slide master.

A package shall contain one or more Slide Master parts, each of which shall be the target of an explicit
relationship from the Presentation (§13.3.6) part, as well as an implicit relationship from any Slide Layout
(§13.3.9) part where that slide layout is defined based on this slide master. Each can optionally be the target of
a relationship in a Slide Layout (§13.3.9) part as well.

[Example: The following Presentation part-relationship item contains a relationship to the Slide Master part,
which is stored in the ZIP item slideMasters/slideMaster1l.xml:

<Relationships xmlns="..">
<Relationship Id="rId1"
Type="http://../slideMaster" Target="slideMasters/slideMasterl.xml"/>
</Relationships>

end example]

115

00 N o U B~ W

10
11

12

13

14

15

16

17

18

20

21

22

23

24

25

26

27

28

29

30

PresentationML

The root element for a part of this content type shall be sldMaster.

[Example:

<p:sldMaster xmlns:p="..">

<p:cSld name=

>

</p:cSld>
<p:clrMap .. />
</p:sldMaster>

end example)

A Slide Master part shall be located within the package containing the source relationship (expressed

syntactically, the TargetMode attribute of the Relationship element shall be Internal).

A Slide Master part is permitted to have implicit relationships to the following parts defined by this Standard:

e Additional Characteristics (§15.2.1)
e Bibliography (§15.2.3)

e Custom XML Data Storage (§15.2.4)
e Slide Layout (§13.3.9)

e Theme (§14.2.7)

e Thumbnail (§15.2.14)

A Slide Master part is permitted to have explicit relationships to the following parts defined by this Standard:

e Audio (§15.2.2)

e Chart (§14.2.1)

e Diagrams: Diagram Colors(§14.2.3), Diagram Data(§14.2.4), Diagram Layout Definition(§14.2.5) and
Diagram Styles (§14.2.6)

e Embedded Control Persistence (§15.2.8)

e Embedded Object (§15.2.9)

e Embedded Package (§15.2.10)

e Hyperlink (§15.3).

e Image (§15.2.13)

e Video (§15.2.14)

e VML Drawing (§15.2.17)

A Slide Master part shall not have implicit or explicit relationships to any other part defined by this Standard.

13.3.11 Slide Synchronization Data Part

Content Type:

application/vnd.openxmlformats-officedocument.presentationml.slideUpdatelnfo+xml

116

10
11

12

13

14

15
16
17

18

19
20

21
22

23

24
25

26

PresentationML

Root http://schemas.openxmlformats.org/presentationml/2006/main

Namespace:

Source http://schemas.openxmlformats.org/officeDocument/2006/relationships/slideUpdatelnfo
Relationship:

An instance of this part type contains properties specifying the current state of a slide that is being
synchronized with a version of that slide stored on a central server.

A package shall contain zero or one Slide Synchronization Data part for each slide stored in the presentation,
and that part shall be the target of an implicit relationship from the corresponding Slide (§13.3.8) part.

[Example: The following Slide part-relationship item contains a relationship to the Slide Synchronization Data
part, which is stored in the ZIP item slideUpdatelnfo/slideUpdatelnfol.xml:

<Relationships xmlns="..">
<Relationship Id="rId1l" Type="http://../slideUpdateInfo”
Target="slideUpdateInfo/slideUpdateInfol.xml"/>
</Relationships>

end example]
The root element for a part of this content type shall be sldSyncPr.
[Example:

<p:sldSyncPr xmlns:p=".." serverSldId="1"
serverSldModifiedTime="2006-08-12T01:31:08"
clientInsertedTime="2006-08-12T01:34:11.227" />

end example]

A Slide Synchronization Data part shall be located within the package containing the source relationship
(expressed syntactically, the TargetMode attribute of the Relationship element shall be Internal).

A Slide Synchronization Data part is permitted to have implicit relationships to the following parts defined by
this Standard:

e Slide Synchronization Server Location (§13.4)

A Slide Synchronization Data part shall not have implicit or explicit relationships to any other part defined by
this Standard.

13.3.12 User Defined Tags Part

Content Type: | application/vnd.openxmlformats-officedocument.presentationml.tags+xml

117

10
11

12

13

14

15
16
17

18

19
20

21
22

23

24

PresentationML

Root http://schemas.openxmlformats.org/presentationml/2006/main

Namespace:

Source http://schemas.openxmlformats.org/officeDocument/2006/relationships/tags
Relationship:

An instance of this part type contains a set of user-defined properties for an object in a presentation (each
property consisting of a name/value pair).

A package shall contain zero or more User Defined Tags parts, zero or one as the target of an explicit
relationship from the corresponding Presentation (§13.3.6) or Slide (§13.3.8) part.

[Example: The following Slide part-relationship item contains a relationship to the User Defined Tags part,
which is stored in the ZIP item tags/tagl.xml:

<Relationships xmlns="..">
<Relationship Id="rId1l" Type="http://../tag"
Target="tags/tagl.xml"/>
</Relationships>

end example]

The root element for a part of this content type shall be tagLst.

[Example:
<p:taglst xmlns:p=".." >
<p:tag name="testTagName" val="testTagValue" />
</p:taglLst>
end example]

A User Defined Tags part shall be located within the package containing the source relationship (expressed
syntactically, the TargetMode attribute of the Relationship element shall be Internal).

A User Defined Tags part shall not have implicit or explicit relationships to any other part defined by this
Standard.

13.3.13 View Properties Part

Content Type: | application/vnd.openxmlformats-officedocument.presentationml.viewProps+xml
Root http://schemas.openxmlformats.org/presentationml/2006/main

Namespace:

Source http://schemas.openxmliformats.org/officeDocument/2006/relationships/viewProps
Relationship:

118

O 00 N O

10

11

12

14
15
16
17
18
19
20
21
22
23
24
25
26

28

29
30

31
32

33

PresentationML

An instance of this part type contains display properties for this presentation.

A package shall contain zero or one View Properties part, and if it exists, that part shall be the target of an
implicit relationship from the Presentation (§13.3.6) part.

[Example: The following Presentation part-relationship item contains a relationship to the View Properties
part, which is stored in the ZIP item viewProps.xml:

<Relationships xmlns="..">
<Relationship Id="rId7"
Type="http://../viewProps" Target="viewProps.xml"/>
</Relationships>

end example)
The root element for a part of this content type shall be viewPr.
[Example:

<p:viewPr xmlns:p="." ..>
<p:normalViewPr showOutlineIcons="0">

</p:normalViewPr>
<p:slideViewPr>

</p:slideViewPr>
<p:outlineViewPr>

</p:outlineViewPr>
<p:notesTextViewPr>

</p:notesTextViewPr>
<p:gridSpacing cx="78028800" cy="78028800"/>
</p:viewPr>

end example]

A View Properties part shall be located within the package containing the source relationship (expressed
syntactically, the TargetMode attribute of the Relationship element shall be Internal).

A View Properties part shall not have implicit or explicit relationships to any other part defined by this
Standard.

13.4 HTML Publish Location

Source http://schemas.openxmliformats.org/officeDocument/2006/relationships/ htmIPubSaveAs
Relationship:

119

10

11
12
13
14
15

16

17
18

19

20

21
22

23
24
25

26
27
28

PresentationML

When a presentation specifies an external location to which an optional copy might be pushed in the HTML
format, this relationship shall be used to target the location where the HTML copy of the presentation is
published.

A package shall contain one HTML Publish Location relationship for each slide linked with an HTML publish
location, and that relationships shall be an explicit relationship from the corresponding Presentation Properties
(§13.3.7) part.

[Example: A Presentation Properties part, which stores an HTML Publish Location of
http://www.openxmlformats.org/test.htm will contain the following relationship in that part's relationship
part:

<Relationships xmlns="..">
<Relationship Id="rId1"
Type="http://../htmlPubSaveAs"
Target="http://www.openxmlformats.org/test.htm" type="External”/>
</Relationships>

end example]

An HTML publish location shall be located external to the package containing the source relationship
(expressed syntactically, the TargetMode attribute of the Relationship element shall be External).

13.5 Slide Synchronization Server Location

Source http://schemas.openxmlformats.org/officeDocument/2006/relationships/slideUpdateUrl
Relationship:

When a slide is being synchronized with a copy stored on a remote server, this relationship shall be used to
target the location where the server copy of the slide is stored.

A package shall contain one Slide Synchronization Server Location relationship for each slide linked with server
data, and that relationships shall be an implicit relationship from the corresponding Slide Synchronization Data
(§13.3.11) part.

[Example: A Slide Synchronization Data part that stores information about a slide that is synchronized with a
server located at http://www.openxmlformats.org/slides/ will contain the following relationship in that part's
relationship part item:

120

PresentationML

<Relationships xmlns="..">
<Relationship Id="rId1"
Type="http://../slideupdateUrl”
Target="http://www.openxmlformats.org/slides/" type="External”/>
</Relationships>

end example)

A slide synchronization server location shall be located external to the package containing the source
relationship (expressed syntactically, the TargetMode attribute of the Relationship element shall be
External).

121

DrawingML

14. DrawingML

The relationship items and parts defined in this clause are used by one or more of WordprocessingML (§10),
SpreadsheetML (§12), and PresentationML (§13) environments.

14.1 Glossary of DrawingML-Specific Terms

diagram — A picture or graphical representation that is displayed using a related set of color, data, layout, and
style parts. Examples of diagram types are cycle, organization chart, pyramid, target, and Venn.

14.2 Part Summary

The subclauses subordinate to this one describe in detail each of the part types specific to DrawingML.

[Note: For convenience, information from those subclauses is summarized in the following table:

Part Relationship Target of Root Element Ref.
Chart WordprocessingML: Main chartSpace §14.2.1
Document

SpreadsheetML: Drawings
PresentationML: Handout Master,
Notes Master, Notes Slide, Slide
Layout, Slide Master, Slide

All: Chart Drawing

Chart Drawing All: Chart userShapes §14.2.2
Diagram Colors WordprocessingML: Main colorsDef §14.2.3
Document

SpreadsheetML: Drawings
PresentationML: Handout Master,
Notes Master, Notes Slide, Slide
Layout, Slide Master, Slide

Diagram Data WordprocessingML: Main dataModel §14.2.4
Document

SpreadsheetML: Drawings
PresentationML: Handout Master,
Notes Master, Notes Slide, Slide
Layout, Slide Master, Slide

Diagram Layout WordprocessingML: Main layoutDef §14.2.5
Definition Document

SpreadsheetML: Drawings
PresentationML: Handout Master,
Notes Master, Notes Slide, Slide
Layout, Slide Master, Slide

122

10
11
12

13

14
15

DrawingML

Part Relationship Target of Root Element Ref.
Diagram Style WordprocessingML: Main styleDef §14.2.6
Document

SpreadsheetML: Drawings
PresentationML: Handout Master,
Notes Master, Notes Slide, Slide
Layout, Slide Master, Slide

Theme WordprocessingML: Main officeStyleSheet §14.2.7
Document

SpreadsheetML: Workbook
PresentationML: Handout Master,
Notes Master, Presentation, Slide

Master

Theme Override PresentationML: Notes Slide, Slide, | themeOverride §14.2.8
Slide Layout

Table Styles PresentationML: Presentation tblStyleLst §14.2.9

end note]

14.2.1 Chart Part

Content Type: | application/vnd.openxmlformats-officedocument.drawingml.chart+xml

Root http://schemas.openxmlformats.org/drawingml/2006/chart

Namespace:

Source http://schemas.openxmlformats.org/officeDocument/2006/relationships/chart
Relationship:

An instance of this part type describes a chart.

A package shall contain a Chart part for each chart in the document. In a WordprocessingML document, each
such part shall be the target of an explicit relationship in a Main Document (§11.3.10) part. In a
SpreadsheetML document, each such part shall be the target of an explicit relationship in a Drawings (§12.3.8)
part. In a PresentationML document, each such part shall be the target of an explicit relationship in a Handout
Master (§13.3.3), Notes Master (§13.3.4), Notes Slide (§13.3.5), Slide (§13.3.8), Slide Layout (§13.3.9), or Slide
Master (§13.3.10) part. This part is permitted to also be the target of an explicit relationship in a Chart Drawing
(§14.2.2) part, if the chart that points at this Chart Drawing part is the target of a relationship from a
Chartsheet part. In other words, the only time a chart can embed another chart is if the parent chart is part of
a chartsheet.

[Example: The following Main Document part-relationship item contains relationships to two Chart parts,
which are stored in the ZIP items ../charts/chartN.xml:

123

a U A~ W N

10
11
12

13
14

15
16
17
18
19
20

21

22

23

24
25
26
27
28
29
30
31
32
33
34
35
36

<Relationships xmlns="..">
<Relationship Id="rId4"
Type="http://../chart"
<Relationship Id="rId5"
Type="http://../chart"
</Relationships>

DrawingML

Target="charts/chartl.xml"/>

Target="charts/chart2.xml"/>

The following Drawings part-relationship item contains a relationship to a Chart part, which is stored in the ZIP

item ../charts/chartl.xml:

<Relationships xmlns="..">
<Relationship Id="rId1"

Type="http://../relationships/chart" Target="../charts/chartl.xml"/>

</Relationships>

The following Slide part-relationship item contains relationships to two Chart parts, which are stored in the ZIP

items ../charts/chartN.xml:

<Relationships xmlns="..">
<Relationship Id="rId4"
Type="http://../chart"
<Relationship Id="rId5"
Type="http://../chart"
</Relationships>

end example)

Target="../charts/chartl.xml"/>

Target="../charts/chart2.xml"/>

The root element for a part of this content type shall be chartSpace.

[Example: chartl.xml contains the following clustered bar chart:

<c:chartSpace ..>
<c:chart>
<c:title>

</c:title>
<c:plotArea>
<c:layout>

</c:layout>
<c:barChart>

</c:barChart>
</c:plotArea>

124

a U A~ W N

10
11

12

13

14

15

16

17

18

19

20
21
22

23
24

25
26

DrawingML

<c:legend>

</c:legend>
</c:chart>

</c:chartSpace>
end example)

For WordprocessingML and PresentationML documents, the data for a chart is not stored in the Chart part
directly. Instead, it shall be stored in an embedded SpreadsheetML package (§12.2) targeted by an Embedded
Package (§15.2.10) part specified by that Chart part. For SpreadsheetML documents, the data for a chart is
stored directly in the Drawing’s parent worksheet; no embedded SpreadsheetML package shall be used.

A Chart part shall be located within the package containing the source relationship (expressed syntactically,
the TargetMode attribute of the Relationship element shall be Internal).

A Chart part is permitted to have explicit relationships to the following parts defined by this Standard:

e Chart Drawing (§14.2.2)
e Embedded Package (§15.2.10)

A Chart part shall not have any implicit or explicit relationships to any other part defined by this Standard.

14.2.2 Chart Drawing Part

Content Type: | application/vnd.openxmlformats-officedocument.drawingml.chartshapes+xml

Root http://schemas.openxmlformats.org/drawingml/2006/chart

Namespace:

Source http://schemas.openxmlformats.org/officeDocument/2006/relationships/chartUserShapes
Relationship:

An instance of this part type contains all basic drawing elements (shapes) which are explicitly associated with
this chart. These drawing elements are automatically moved with the chart when it is moved and resized when
the chart is resized.

A package is permitted to contain one Chart Drawing part per chart part, and each such part shall be the target
of an explicit relationship from a Chart (§14.2.1) part.

[Example: The following Chart part-relationship item contains a relationship to a Chart Drawing part, which is
stored in the ZIP item ../drawings/drawingl.xml:

125

(\=]

10
11

13

14
15

16

17

18
19

20

21

22

23
24
25

26
27

DrawingML

<Relationships xmlns="..">
<Relationship Id="rId2"
Type="http://../chartUserShapes" Target="../drawings/drawingl.xml"/>
</Relationships>

end example]
The root element for a part of this content type shall be userShapes.
[Example:

<c:userShapes xmlns:cdr=".." xmlns:c="..">
<cdr:relSizeAnchor>

</cdr:relSizeAnchor>
</c:userShapes>

end example)

A Chart Drawing part shall be located within the package containing the source relationship (expressed
syntactically, the TargetMode attribute of the Relationship element shall be Internal).

A Chart Drawing part is permitted to have explicit relationships to the following parts defined by this Standard:
e Chart(§14.2.1)

A Chart Drawing part shall not have any implicit or explicit relationships to any other part defined by this
Standard.

14.2.3 Diagram Colors Part

Content Type: | application/vnd.openxmlformats-officedocument.drawingml.diagramColors+xml

Root http://schemas.openxmlformats.org/drawingml/2006/diagram

Namespace:

Source http://schemas.openxmliformats.org/officeDocument/2006/relationships/diagramColors
Relationship:

An instance of this part type contains color information for a diagram.

A package shall contain exactly one Diagram Colors part per diagram. Each Diagram Colors part shall be the
target of an explicit relationship in a WordprocessingML Main Document (§11.3.10), SpreadsheetML Drawings
(§12.3.8), or PresentationML Slide (§13.3.8) part.

[Example: The following SpreadsheetML Drawings part-relationship item contains a relationship to two
Diagram Colors parts, which are stored in the ZIP items ../graphics/colorsN.xml.

126

(\=]

11
12
13
14
15
16
17
18
19
20
21
22
23

24

25
26

27

28

29

30

31

DrawingML

<Relationships xmlns="..">
<Relationship Id="rId4"
Type="http://../diagramColors" Target="../graphics/colorsl.xml"/>
<Relationship Id="rId8"
Type="http://../diagramColors"” Target="../graphics/colors2.xml"/>
</Relationships>

end example)

The root element for a part of this content type shall be colorsDef.

[Example: colors1l.xml contains the following:

<cs:colorsDef xmlns:cs=".." uniqueld=".." minVer="12.0">

<cs:title lang=
<cs:desc lang=

val="Primary Accent 2"/>
val="Primary Accent 2"/>

<cs:catlLst>

<cs:cat type="accentl" pri="11200"/>
</cs:catlLst>
<cs:stylelbl .>

</cs:stylelLbl>

<cs:stylelbl ..>

</cs:stylelLbl>
</cs:colorsDef>

end example]

A Diagram Colors part shall be located within the package containing the source relationship (expressed

syntactically, the TargetMode attribute of the Relationship element shall be Internal).

A Diagram Colors part shall not have implicit or explicit relationships to any other part defined by this

Standard.

14.2.4 Diagram Data Part

Content Type: | application/vnd.openxmlformats-officedocument.drawingml.diagramData+xml

Root http://schemas.openxmlformats.org/drawingml/2006/diagram

Namespace:

Source http://schemas.openxmlformats.org/officeDocument/2006/relationships/diagramData
Relationship:

An instance of this part type contains the semantic data for a diagram.

127

16
17
18
19
20
21
22
23
24
25

26

27

28

29

30

31

32

DrawingML

A package shall contain exactly one Diagram Data part per diagram. Each Diagram Data part shall be the target
of an explicit relationship in a WordprocessingML Main Document (§11.3.10); a SpreadsheetML Drawings part
(§12.3.8); or a PresentationML Handout Master (§13.3.3), Notes Master (§13.3.4), Notes Slide (§13.3.5), Slide
(§13.3.8), Slide Layout (§13.3.9), or Slide Master (§13.3.10) part.

[Example: The following SpreadsheetML Drawings part-relationship item contains a relationship to two
Diagram Data parts, which are stored in the ZIP items ../graphics/dataN.xml.

<Relationships xmlns="..">
<Relationship Id="rId1"
Type="http://../diagramData"” Target="../graphics/datal.xml"/>
<Relationship Id="rId5"
Type="http://../diagramData" Target="../graphics/data2.xml"/>
</Relationships>

end example]
The root element for a part of this content type shall be dataModel.
[Example: datal.xml contains the following:

<dm:dataModel xmlns:dm="..">
<dm:ptLst>

</dm:ptLst>
<dm:cxnLst>

</dm:cxnLst>

<dm:bg/>

<dm:whole/>
</dm:dataModel>

end example)

A Diagram Data part shall be located within the package containing the source relationship (expressed
syntactically, the TargetMode attribute of the Relationship element shall be Internal).

A Diagram Data part is permitted to have explicit relationships to the following parts defined by this Standard:
e Image (§15.2.13)

A Diagram Data part shall not have any implicit or explicit relationships to other parts defined by this Standard.

14.2.5 Diagram Layout Definition Part

Content Type: | application/vnd.openxmlformats-officedocument.drawingml.diagramLayout+xml

128

DrawingML

Root http://schemas.openxmlformats.org/drawingml/2006/diagram

Namespace:

Source http://schemas.openxmlformats.org/officeDocument/2006/relationships/diagramLayout
Relationship:

2 Aninstance of this part type is a template that describes how diagram-related data is mapped to a shape.

3 A package shall contain exactly one Diagram Layout Definition part per diagram. Each Layout Definition part
4 shall be the target of an explicit relationship from a WordprocessingML Main Document (§11.3.10); a

5 SpreadsheetML Drawings part (§12.3.8); or a PresentationML Handout Master (§13.3.3), Notes Master

6 (§13.3.4), Notes Slide (§13.3.5), Slide (§13.3.8), Slide Layout (§13.3.9), or Slide Master (§13.3.10) part. If a

7 document contains multiple diagrams having the same graphic layout definition, each of those diagrams shall
8 have its own copy of that Diagram Layout Definition part.

9 [Example: The following SpreadsheetML Drawings part-relationship item contains a relationship to two
10 Diagram Layout Definition parts, which are stored in the ZIP items ../graphics/layoutN.xml.

11 <Relationships xmlns="..">

12 <Relationship Id="rId2"

13 Type="http://../diagramLayout"” Target="../graphics/layoutl.xml"/>
14 <Relationship Id="rIdé6"

15 Type="http://../diagramLayout"” Target="../graphics/layout2.xml"/>
16 </Relationships>

17 end example)
18 The root element for a part of this content type shall be layoutDef.

19 [Example: layoutl.xml contains the following:

20 <lo:layoutDef xmlns:lo=".." uniqueId="..2" minVer="12.0" defStyle="">
21 <lo:title lang="" val="Hierarchy 2"/>
22 <lo:desc lang="" val=""/>

23 <lo:catLst>

24 <lo:cat type="hierarchy" pri="2000"/>
25 </lo:catLst>

26 <lo:sampData>

27 -

28 </lo:sampData>

29 <lo:styleData>

30 -

31 </lo:styleData>

129

Jany

N o o A wWwN

10

11
12

13

14
15

16

17

18

19
20
21
22

23
24

DrawingML

<lo:clrData>

</lo:clrData>
<lo:layoutNode name="Name®" stylelLbl="" moveWith="">

</lo:layoutNode>
</lo:layoutDef>

end example]

A Diagram Layout Definition part shall be located within the package containing the source relationship
(expressed syntactically, the TargetMode attribute of the Relationship element shall be Internal).

A Diagram Layout Definition part is permitted to have explicit relationships to the following parts and items
defined by this Standard:

e Image (§15.2.13)

A Diagram Layout Definition part shall not have any implicit or explicit relationships to other parts defined by
this Standard.

14.2.6 Diagram Style Part

Content Type: | application/vnd.openxmlformats-officedocument.drawingml.diagramStyle+xml

Root http://schemas.openxmlformats.org/drawingml/2006/diagram

Namespace:

Source http://schemas.openxmlformats.org/officeDocument/2006/relationships/diagramQuickStyle
Relationship:

An instance of this part type maps diagram semantic information to a document's theme.

A package shall contain exactly one Diagram Style part per diagram. Each Style part shall be the target of an
explicit relationship from a WordprocessingML Main Document (§11.3.10); a SpreadsheetML Drawings part
(§12.3.8); or a PresentationML Handout Master (§13.3.3), Notes Master (§13.3.4), Notes Slide (§13.3.5), Slide
(813.3.8), Slide Layout (§13.3.9), or Slide Master (§13.3.10) part.

[Example: The following SpreadsheetML Drawings part-relationship item contains a relationship to two
Diagram Style parts, which are stored in the ZIP items ../graphics/quickStyleN.xml.

130

0 N o b~ W N

10

12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30

32

33
34

35

36

<Relationships xmlns="..">
<Relationship Id="rId3"
Type="http://../diagramQuickStyle"
Target="../graphics/quickStylel.xml"/>
<Relationship Id="rId7"
Type="http://../diagramQuickStyle"
Target="../graphics/quickStyle2.xml"/>
</Relationships>

end example]

The root element for a part of this content type shall be styleDef.

[Example: quickStyle1l.xml contains the following:

<gs:styleDef xmlns:gs=".." uniqueId=".." minVer="12.0">
<gs:title lang="" val="Style 2"/>
<gs:desc lang="" val="Style 2"/>
<gs:catlLst>
<gs:cat type="simple" pri="10200"/>
</gs:catlLst>
<gs:scene3d>

</qs:scene3d>
<gs:style>

</qgs:style>

<gs:stylelLbl name="..

>

</qgs:stylelLbl>

<gs:stylelLbl name=".">

</qgs:stylelLbl>
</qs:styleDef>

end example]

DrawingML

A Diagram Style part shall be located within the package containing the source relationship (expressed

syntactically, the TargetMode attribute of the Relationship element shall be Internal).

A Diagram Style part shall not have implicit or explicit relationships to other parts defined by this Standard.

14.2.7 Theme Part

Content Type:

application/vnd.openxmlformats-officedocument.theme+xml

131

10
11

12
13

14
15
16
17

18

19

20
21
22

23
24
25
26
27
28
29
30

DrawingML

Root http://schemas.openxmlformats.org/drawingml/2006/main

Namespace:

Source http://schemas.openxmliformats.org/officeDocument/2006/relationships/theme
Relationship:

An instance of this part type contains information about a document's theme, which is a combination of color
scheme, font scheme, and format scheme (the latter also being referred to as effects). For a WordprocessingML
document, the choice of theme affects the color and style of headings, among other things. For a
SpreadsheetML document, the choice of theme affects the color and style of cell contents and charts, among
other things. For a PresentationML document, the choice of theme affects the formatting of slides, handouts,
and notes via the associated master, among other things.

A WordprocessingML or SpreadsheetML package shall contain zero or one Theme part, which shall be the
target of an implicit relationship in a Main Document (§11.3.10) or Workbook (§12.3.23) part. A
PresentationML package shall contain zero or one Theme part per Handout Master (§13.3.3), Notes Master
(§13.3.4), Slide Master (§13.3.10) or Presentation (§13.3.6) part via an implicit relationship.

[Example: The following WordprocessingML Main Document part-relationship item contains a relationship to
the Theme part, which is stored in the ZIP item theme/themel.xml:

<Relationships xmlns="..">
<Relationship Id="rId4"
Type="http://../theme" Target="theme/themel.xml"/>
</Relationships>

end example]
The root element for a part of this content type shall be officeStyleSheet.

[Example: themel.xml contains the following, where the name attributes of the clrScheme, fontScheme, and
fmtScheme elements correspond to the document's color scheme, font scheme, and format scheme,
respectively:

<a:officeStyleSheet xmlns:a="..">
<a:baseStyles>
<a:clrScheme name="..">

</a:clrScheme>
<a:fontScheme name="..">

</a:fontScheme>

132

a U A~ W N

10

11

12

13

14

15
16
17

18
19

20
21

22
23
24
25

26

27

28

DrawingML

<a:fmtScheme name="..">

</a:fmtScheme>
</a:baseStyles>
<a:objectDefaults/>
</a:officeStyleSheet>

end example)

A Theme part shall be located within the package containing the source relationship (expressed syntactically,
the TargetMode attribute of the Relationship element shall be Internal).

A Theme part is permitted to contain explicit relationships to the following parts defined by this Standard:
e Image (§15.2.13)
A Theme part shall not have any implicit or explicit relationships to other parts defined by this Standard.

14.2.8 Theme Override Part

Content Type: | application/vnd.openxmlformats-officedocument.themeOverride+xml

Root http://schemas.openxmliformats.org/drawingml/2006/main

Namespace:

Source http://schemas.openxmliformats.org/officeDocument/2006/relationships/themeOverride
Relationship:

An instance of this part type contains information about an object’s theme override, which are overrides to the
color scheme, font scheme, and format scheme (the latter also being referred to as effects) for a particular
slide, notes slide, or handout.

A PresentationML package shall contain zero or one Theme Override part per Notes Slide (§13.3.5), Slide
(§13.3.8), or Slide Layout (§13.3.9) part via an implicit relationship.

[Example: The following WordprocessingML Main Document part-relationship item contains a relationship to
the Theme part, which is stored in the ZIP item theme/themel.xml:

<Relationships xmlns="..">
<Relationship Id="rId1"
Type="http://../themeOverride" Target="theme/themeoverridel.xml"/>
</Relationships>

end example]
The root element for a part of this content type shall be ossOverride.

[Example:

133

10

11
12

13
14

15
16

17
18
19
20

21

22

23

24
25
26
27
28

DrawingML

<a:ossOverride xmlns:a=".." >

</a:ossOverride>

end example)

A Theme Override part shall be located within the package containing the source relationship (expressed

syntactically, the TargetMode attribute of the Relationship element shall be Internal).

A Theme Override part shall not contain implicit or explicit relationships to other parts defined by this

Standard.

14.2.9 Table Styles Part

Content Type: | application/vnd.openxmlformats-officedocument.presentationml.tableStyles+xml
Root http://schemas.openxmlformats.org/drawingml/2006/main

Namespace:

Source http://schemas.openxmlformats.org/officeDocument/2006/relationships/tableStyles
Relationship:

An instance of this part type contains information about the table styles used by tables in this presentation. A

table style defines characteristics such as row and column colors, heading row colors, and text.

A PresentationML package shall contain no more than one Table Styles part per Presentation (§13.3.6) part via

an implicit relationship.

[Example: The following Presentation part-relationship item contains a relationship to a Table Styles part,

which is stored in the ZIP item tableStyles.xml:

<Relationships xmlns="..">
<Relationship Id="rId1"
Type="http://../tableStyles" Target="tableStyles.xml"/>
</Relationships>

end example]

The root element for a part of this content type shall be tbiStyleLst.

[Example: tablestyles.xml contains the following:

<a:tblStylelst xmlns:a="..">
<a:tblStyle>

</a:tblStyle>
</a:tblStylelLst>

134

DrawingML

end example]

A Table Styles part shall be located within the package containing the source relationship (expressed
syntactically, the TargetMode attribute of the Relationship element shall be Internal).

A Table Styles part shall not contain implicit or explicit relationships to other parts defined by this Standard.

135

15. Shared

Shared

The relationship items and parts defined in this clause are used by one or more of WordprocessingML (§10),

SpreadsheetML (§12), and PresentationML (§13) environments.

15.1 Glossary of Shared Terms

control — A region of active content within an Office Open XML document.

15.2 Part Summary

The subclauses subordinate to this one describe in detail each of the shared part types.

[Note: For convenience, information from those subclauses is summarized in the following table:

SpreadsheetML, and
WordprocessingML parts

Part Relationship Target of Root Element Ref.
Additional Numerous PresentationML, Characteristics §15.2.1
Characteristics SpreadsheetML, and

WordprocessingML parts
Audio Numerous PresentationML, Not applicable §15.2.2
SpreadsheetML, and
WordprocessingML parts
Bibliography Numerous PresentationML, Sources §15.2.3
SpreadsheetML, and
WordprocessingML parts
Custom XML Data Numerous PresentationML, Not applicable §15.2.4
Storage SpreadsheetML, and
WordprocessingML parts
Custom XML Data Custom XML Data Storage datastoreltem §15.2.5
Storage Properties
Digital Signature WordprocessingML, Not applicable §15.2.6
Origin SpreadsheetML, or
PresentationML package
Digital Signature Digital Signature Origin Signature §15.2.7
XML Signature
Embedded Control Numerous PresentationML, Not applicable §15.2.8
Persistence SpreadsheetML, and
WordprocessingML parts
Embedded Object Numerous PresentationML, Not applicable §15.2.9

136

Shared

Part Relationship Target of Root Element Ref.
Embedded Package Numerous PresentationML, Not applicable §15.2.10
SpreadsheetML, and
WordprocessingML parts
File Properties, WordprocessingML, Properties §15.2.11.3
Extended SpreadsheetML, or
PresentationML package
File Properties, Core | WordprocessingML, coreProperties §15.2.11.1
SpreadsheetML, or
PresentationML package
File Properties, WordprocessingML, properties §15.2.11.2
Custom SpreadsheetML, or
PresentationML package
Font WordprocessingML Font Not applicable §15.2.12
Table part, PresentationML
Presentation part
Image Numerous PresentationML, Not applicable §15.2.13
SpreadsheetML, and
WordprocessingML parts
Printer Settings SpreadsheetML Chartsheet, Not applicable §15.2.14
Dialogsheet, Worksheet
parts, WordprocessingML
Main Document or Glossary
Document parts
Thumbnail WordprocessingML, Not applicable §15.2.14
SpreadsheetML, or
PresentationML package
Video part Numerous PresentationML Not applicable §15.2.16
and WordprocessingML parts
end note]
15.2.1 Additional Characteristics Part
Content Type: | application/xml
Root http://schemas.openxmlformats.org/officeDocument/2006/additionalCharacteristics
Namespace:
Source http://schemas.openxmlformats.org/officeDocument/2006/relationships/customXml
Relationship:

An instance of this part type contains information about additional characteristics of the producer that

generated the document, when those characteristics cannot be specified using elements defined by this

Standard.

137

10
11

12

13
14

15
16

17

18
19

20

21

22

Shared

A package is permitted to contain zero or one Additional Characteristics parts, and each such part shall be the
target of an implicit relationship from a Main Document (§11.3.10) part in a WordprocessingML package; a
Workbook (§12.3.23) part in a SpreadsheetML package; or a Handout Master (§13.3.3) , Notes Master
(§13.3.4), Notes Slide (§13.3.5), Presentation (§13.3.6), Slide (§13.3.8), Slide Layout (§13.3.9), or Slide Master
(§13.3.10) part in a PresentationML package.

[Example: The following Main Document part-relationship item contains a relationship to an Additional
Characteristics part, which is stored in the ZIP item ../customXML/item2.xml:

<Relationships xmlns="..">
<Relationship Id="rId1"
Type="http://../customXmlData" Target="../customXML/item2.xml"/>
</Relationships>

end example]

An Additional Characteristics part shall be located within the package containing the source relationship
(expressed syntactically, the TargetMode attribute of the Relationship element shall be Internal).

An Additional Characteristics part is permitted to have implicit relationships to the following parts defined by
this Standard:

e Custom XML Data Storage Properties (§15.2.5)

An Additional Characteristics part shall not have implicit or explicit relationships to any other part defined by
this Standard.

15.2.2 Audio Part

Content Type: | Any supported audio type.

[Note: Some example content types are:

audio/aiff http://developer.apple.com/documentation/QuickTime/INMAC/SOUN
D/imsoundmgr.30.htm

audio/midi http://www.midi.org/about-midi/specinfo.shtml

audio/x-ms-wax | http://msdn.microsoft.com/library/en-
us/wmplayl0/mmp_sdk/asx_elementsintro.asp

end note]
Root not applicable
Namespace:
Source http://schemas.openxmlformats.org/officeDocument/2006/relationships/audio
Relationship:

An instance of this part type contains an audio file.

138

http://developer.apple.com/documentation/QuickTime/INMAC/SOUND/imsoundmgr.30.htm
http://developer.apple.com/documentation/QuickTime/INMAC/SOUND/imsoundmgr.30.htm
http://msdn.microsoft.com/library/en-us/wmplay10/mmp_sdk/asx_elementsintro.asp
http://msdn.microsoft.com/library/en-us/wmplay10/mmp_sdk/asx_elementsintro.asp

O 00 N O

11

12

13
14

15

16

17

18

19

20
21
22
23
24

25
26

27
28
29
30

Shared

A PresentationML package is permitted to contain zero or more Sound parts, each of which shall be the target
of a relationship in a Handout Master (§13.3.3), Notes Slide (§13.3.5), Notes Master (§13.3.4), Slide (§13.3.8),
Slide Layout (§13.3.9), or Slide Master (§13.3.10) part-relationship item. [Example: The following Slide part-
relationship item contains a relationship to a Sound part, which is stored as the file E:\Beethoven's Symphony
No. 9.wma:

<Relationships xmlns="..">
<Relationship Id="rId1l"
Type="http://../audio/x-ms-wma"
Target="file:///E:\Beethoven's%20Symphony%20No.%209.wma"
TargetMode="External"/>
</Relationships>

end example]

An Audio part may be located within or external to the package containing the source relationship (expressed
syntactically, the TargetMode attribute of the Relationship element may be Internal or External).

An Audio part is not stored as XML; instead, it involves a relationship target that is an audio clip.

An Audio part shall not have implicit or explicit relationships to other parts defined by this Standard.

15.2.3 Bibliography Part

Content Type: | application/xml

Root http://schemas.openxmliformats.org/officeDocument/2006/bibliography
Namespace:

Source http://schemas.openxmliformats.org/officeDocument/2006/relationships/customXmi
Relationship:

An instance of this part type contains bibliographic data for the current package.

A package is permitted to contain zero or one Bibliography part, and each such part shall be the target of an
implicit relationship in a Main Document (§11.3.10) part in a WordprocessingML package; a Workbook
(§12.3.23) part in a SpreadsheetML package; or a Handout Master (§13.3.3) , Notes Master (§13.3.4), Notes
Slide (§13.3.5), Slide (§13.3.8), Slide Layout (§13.3.9), or Slide Master (§13.3.10) part in a PresentationML
package.

[Example: The following Main Document part-relationship item contains a relationship to a Bibliography part,
which is stored in the ZIP item ../customXML/bib1.xml:

<Relationships xmlns="..">
<Relationship Id="rId1"
Type="http://../customXml” Target="../customXML/bibl.xml"/>
</Relationships>

139

10

11
12
13
14
15

16
17

18
19
20
21

22

23
24

25
26

27

Shared

end example]

A Bibliography part shall be located within the package containing the source relationship (expressed
syntactically, the TargetMode attribute of the Relationship element shall be Internal).

A Bibliography part is permitted to have implicit relationships to the following parts defined by this Standard:
e Custom XML Data Storage Properties (§15.2.5)

A Bibliography part shall not have implicit or explicit relationships to any other part defined by this Standard.

15.2.4 Custom XML Data Storage Part

Content Type: | application/xml

Root any XML allowed

Namespace:

Source http://schemas.openxmliformats.org/officeDocument/2006/relationships/customXmi
Relationship:

An instance of this part type can contain arbitrary XML. As such, an instance of this part can be used to
roundtrip arbitrary custom XML data with this package.

A package is permitted to contain one or more Custom XML Data Storage parts, and each such part shall be the
target of an implicit relationship in a Main Document (§11.3.10) part in a WordprocessingML package; a
Workbook (§12.3.23) part in a SpreadsheetML package; or a Handout Master (§13.3.3) , Notes Master
(§13.3.4), Notes Slide (§13.3.5), Presentation (§13.3.6), Slide (§13.3.8), Slide Layout (§13.3.9), or Slide Master
(§13.3.10) part in a PresentationML package.

[Example: The following Main Document part-relationship item contains a relationship to a Custom XML Data
Storage part, which is stored in the ZIP item ../customXML/item1.xml:

<Relationships xmlns="..">
<Relationship Id="rId1"
Type="http://../customXmlData" Target="../customXML/iteml.xml"/>
</Relationships>

end example]

A Custom XML Data Storage part shall be located within the package containing the source relationship
(expressed syntactically, the TargetMode attribute of the Relationship element shall be Internal).

A Custom XML Data Storage part is permitted to have implicit relationships to the following parts defined by
this Standard:

e Custom XML Data Storage Properties (§15.2.5)

140

10
11

12
13
14
15

16

17

18

19

20

21
22
23

24
25

26

Shared

A Custom XML Data Storage part shall not have implicit or explicit relationships to any other part defined by
this Standard.

15.2.5 Custom XML Data Storage Properties Part

Content Type: | application/vnd.openxmlformats-officedocument.customXmlProperties+xml

Root http://schemas.openxmlformats.org/officeDocument/2006/customXmliDataProps
Namespace:

Source http://schemas.openxmlformats.org/officeDocument/2006/relationships/customXmlIProps
Relationship:

An instance of this part type contains the set of properties which are specified for this custom XML data. These
properties consist of a unique ID for the storage, as well as information on the set of XML schemas used by this
custom XML data storage.

A package is permitted to contain zero or more Custom XML Data Storage Properties parts, and each such part
shall be the target of an implicit relationship from a Custom XML Data Storage (§15.2.4) part.

[Example: The following Custom XML Data Storage part-relationship item contains a relationship to a Custom
XML Data Storage Properties part, which is stored in the ZIP item itemProps1.xml:

<Relationships xmlns="..">
<Relationship Id="rId1l"
Type="http://../customXmlProps" Target="itemPropsl.xml"/>
</Relationships>

end example)
The root element for a part of this content type shall be datastoreltem.
[Example:

<ds:datastoreltem ds:itemID="{D85..53A}" xmlns:ds=".."/> \
end example)

A Custom XML Data Storage Properties part shall be located within the package containing the source
relationship (expressed syntactically, the TargetMode attribute of the Relationship element shall be
Internal).

A Custom XML Data Storage Properties part shall not have implicit or explicit relationships to other parts
defined by this Standard.

15.2.6 Digital Signature Origin Part

Content Type: | application/vnd.openxmliformats-package.digital-signature-origin

141

10
11
12

13

14
15

16
17

18

19
20

21

22

23

Shared

Root not applicable

Namespace:

Source http://schemas.openxmliformats.org/package/2006/relationships/digital-signature/origin
Relationship:

The Digital Signature Origin part is the starting point for navigating through the signatures in a package.
This part shall have no contents.

A package is permitted to contain zero or one Digital Signature Origin part in a package and it shall the target
of a relationship from the package-relationship item for a WordprocessingML, SpreadsheetML, or
PresentationML package.

[Example: The following package-relationship item contains a relationship to a Digital Signature Origin part,
which is stored in the ZIP item origin.sigs:

<Relationships xmlns="..">
<Relationship Id="rId1"
Type="http://../origin" Target="../origin.sigs"/>
</Relationships>

end example]

A Digital Signature Origin part shall be located within the package containing the source relationship
(expressed syntactically, the TargetMode attribute of the Relationship element shall be Internal).

A Digital Signature Origin part is permitted to have implicit relationships to the following parts defined by this
Standard:

e Digital Signature XML Signature (§15.2.7)

A Digital Signature Origin part shall not have implicit or explicit relationships to any other part defined by this
Standard.

15.2.7 Digital Signature XML Signature Part

Content Type: | application/vnd.openxmlformats-package.digital-signature-xmlsignature+xml

Root http://schemas.openxmliformats.org/package/2006/digital-signature

Namespace:

Source http://schemas.openxmliformats.org/package/2006/relationships/digital-signature/signature
Relationship:

The Digital Signature XML Signature part contains digital signature markup.

142

O 00 N O

10

11

12

13
14
15

16

17
18

19
20

21

22

23
24

Shared

A package is permitted to contain zero or more Digital Signature XML Signature parts, one for each digital
signature in a package, and each of these shall be the target of an implicit relationship from the Digital
Signature Origin (§15.2.6) part.

[Example: The following Digital Signature Origin part-relationship item contains a relationship to a Digital
Signature XML Signature part, which is stored in the ZIP item sigl.xml:

<Relationships xmlns="..">
<Relationship Id="rId1"
Type="http://../signature” Target="../sigl.xml"/>
</Relationships>

end example]
The root element for this part shall be Signature.
[Example:

<Signature xmlns=".." Id="idPackageSignature" >

</Signature>
end example]

A Digital Signature XML Signature part shall be located within the package containing the source relationship
(expressed syntactically, the TargetMode attribute of the Relationship element shall be Internal).

A Digital Signature XML Signature part shall not have implicit or explicit relationships to any part defined by
this Standard.

15.2.8 Embedded Control Persistence Part

Content Type: | Any supported control type.

[Note: There are a number of possible control types. One example of a potential control type
would be an Active X control, which would use the following content type:
application/vnd.ms-office.activeX+xml. end note]

Root not applicable

Namespace:

Source http://schemas.openxmliformats.org/officeDocument/2006/relationships/control
Relationship:

An instance of this part contains information about an embedded control in the package. This information is
provided by the specified control when asked to persist.

143

Shared

A package is permitted to contain one or more Embedded Control Persistence parts, and each such part shall
be the target of an explicit relationship in an Endnotes (§11.3.4), Footer (§11.3.6), Footnotes (§11.3.7), Header
(§11.3.9), or Main Document (§11.3.10) part-relationship item in a WordprocessingML package; a Worksheet
part (§12.3.24) 15.2.17in a SpreadsheetML package; or a Handout Master (§13.3.3), Notes Slide (§13.3.5),
Notes Master (§13.3.4), Slide (§13.3.8), Slide Layout (§13.3.9), Slide Master (§13.3.10) part-relationship item in

a PresentationML package.

The content type of this part shall determine the format and contents of the embedded control.

[Example: The following example shows the persistence that could be used for an embedded control which is a

Java applet within a WordprocessingML document:

<W:p>
<w:r w:rsidR="005810E1">
<w:object w:dxaOrig="1440" w:dyaOrig="1440">

<v:shapetype id="_x0000_t75" coordsize="21600,21600" o:spt="75"
o:preferrelative="t" path="m@4@51@4@11@9@11@9@5xe" filled="f" stroked="f">

<v:stroke joinstyle="miter" />
<v:formulas>

<v:f egqn="if lineDrawn pixellLineWidth @" />

<v:f egn="sum @@ 1 0" />

<v:f egn="sum @ @ @1" />

<v:f egn="prod @2 1 2" />

<v:f eqn="prod @3 21600 pixelWidth" />

<v:f egn="prod @3 21600 pixelHeight" />
<v:f egn="sum @@ © 1" />

<v:f egn="prod @6 1 2" />

<v:f eqn="prod @7 21600 pixelWidth" />

<v:f egqn="sum @8 21600 0" />

<v:f egn="prod @7 21600 pixelHeight" />

<v:f egn="sum @10 21600 0" />
</v:formulas>

<v:path o:extrusionok="f" gradientshapeok="t" o:connecttype="rect" />

<o:lock v:ext="edit" aspectratio="t" />
</v:shapetype>
<v:shape id="_ x0000 11027" type="# x0000 t75"
style="width:1in;height:24pt" o:o0le="">
<v:imagedata r:id="rId4" o:title="" />
</v:shape>
<w:control r:id="rId5" w:name="CommandButtonl"
/>
</w:object>
</w:ir>
</wWip>

w:shapeid="_x0000 il1027"

144

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40

Shared

The relationship type for rld5 is: http://schemas.openxmlformats.org/officeDocument/
2006/relationships/control

The XML content of the part referenced by rid5 could be:

<applet xlink:href="../../../../Program%20Files/Application”
xlink:type="simple" xlink:show="embed" xlink:actuate="onLoad"
code="CalculateApplet.class" may-script="false"/>

end example]

[Example: The following example shows the persistence that could be used for an embedded control which is
an ActiveX control within a WordprocessingML document:

<w:p>
<w:r w:rsidR="005810E1">
<w:object w:dxaOrig="1440" w:dyaOrig="1440">
<v:shapetype id="_x0000_t75" coordsize="21600,21600" o:spt="75"
o:preferrelative="t" path="m@4@51@4@11@9@11@9@5xe" filled="f" stroked="f">
<v:stroke joinstyle="miter" />
<v:formulas>
<v:f egqn="if lineDrawn pixellLineWidth @" />
<v:f egn="sum @@ 1 ©" />

<v:f egn="sum @ @ @1" />

<v:f egn="prod @2 1 2" />

<v:f eqn="prod @3 21600 pixelWidth" />

<v:f egqn="prod @3 21600 pixelHeight" />
<v:f egn="sum @@ @ 1" />

<v:f egn="prod @6 1 2" />

<v:f egqn="prod @7 21600 pixelWidth" />

<v:f egqn="sum @8 21600 0" />

<v:f egn="prod @7 21600 pixelHeight" />

<v:f egn="sum @10 21600 0" />
</v:formulas>
<v:path o:extrusionok="f" gradientshapeok="t" o:connecttype="rect" />
<o:lock v:ext="edit" aspectratio="t" />
</v:shapetype>
<v:shape id="_ x0000 i11027" type="# x0000 t75"
style="width:1in;height:24pt" o:0le="">
<v:imagedata r:id="rId4" o:title="" />
</v:shape>
<w:control r:id="rId5" w:name="CommandButtonl" w:shapeid="_x0000_i1027"
/>
</w:object>
</wir>

145

O 00 N O

11
12
13
14
15
16

17

18
19

20
21

22

23

24

25
26
27
28
29
30

Shared

</w:p>

The relationship type for rld5 is: http://schemas.openxmlformats.org/officeDocument/
2006/relationships/control

The content type of the part referenced by rld5 could be: application/vnd.ms-office.activeX+xml
The XML content of the part referenced by rld5 could be:

<ax:o0cx ax:classid="{D7053240-CE69-11CD-A777-00DD01143C57}"
ax:persistence="persistPropertyBag"
xmlns:ax="http://schemas.microsoft.com/office/2006/activeX">
<ax:ocxPr ax:name="Caption" ax:value="CommandButtonl" />
<ax:ocxPr ax:name="Size" ax:value="2540;847" />
<ax:ocxPr ax:name="FontName" ax:value="Calibri" />
<ax:ocxPr ax:name="FontHeight" ax:value="225" />
<ax:ocxPr ax:name="FontCharSet" ax:value="0" />
<ax:ocxPr ax:name="FontPitchAndFamily" ax:value="2" />
<ax:ocxPr ax:name="ParagraphAlign" ax:value="3" />
</ax:ocx>

end example]

An Embedded Control Persistence part shall be located within the package containing the source relationship
(expressed syntactically, the TargetMode attribute of the Relationship element shall be Internal).

An Embedded Control Persistence part shall not have any implicit or explicit relationships to other parts
defined by this Standard.

15.2.9 Embedded Object Part

Content Type: | application/vnd.openxmlformats-officedocument.oleObject

Root not applicable

Namespace:

Source http://schemas.openxmlformats.org/officeDocument/2006/relationships/oleObject
Relationship:

An instance of this part type can contain an embedded object produced by any embedded object server.

A package is permitted to contain zero or more Embedded Object parts, and each such part shall be the target
of an explicit relationship from a Comments (§11.3.2), Endnotes (§11.3.4), Footer (§11.3.6), Footnotes
(§11.3.7), Header (§11.3.9), or Main Document (§11.3.10) part in a WordprocessingML package; a Worksheet
part (§12.3.24) in a SpreadsheetML package; or a Handout Master (§13.3.3), Notes Slide (§13.3.5), Notes
Master (§13.3.4), Slide (§13.3.8), Slide Layout (§13.3.9), Slide Master (§13.3.10) part in a PresentationML
package.

146

10
11
12
13
14
15
16
17
18

19

20
21

22
23
24

25

26
27
28
29
30
31

32

33
34

35
36

Shared

A WordprocessingML document package is permitted to contain zero or more Embedded Object parts, each of
which shall be the target of a relationship in a Main Document part-relationship item. Each Embedded Object
part shall have an associated image, which appears in the document as a placeholder for the corresponding
embedded object.

[Example: Consider the case in which a WordprocessingML document has embedded in it one video object and
one audio object. The following Main Document part-relationship item contains relationships to two
Embedded parts (one each for the video and audio), which are stored in the ZIP items
embeddings/embeddedObjectN.bin:

<Relationships xmlns="..">
<Relationship Id="rId5"
Type="http://../0leObject" Target="embeddings/embeddedObjectl.bin"/>
<Relationship Id="rId7"
Type="http://../oleObject" Target="embeddings/embeddedObject2.bin"/>
<Relationship Id="rId4"
Type="http://../image" Target="media/imagel.png"/>
<Relationship Id="rIdé6"
Type="http://../image" Target="media/image2.png"/>
</Relationships>

example]

A SpreadsheetML document package is permitted to contain zero or more Embedded Object parts, each of
which shall be the target of a relationship in a Worksheet part-relationship item.

[Example: Consider the case in which a SpreadsheetML document has embedded in it one video object and
one audio object on one worksheet, and another audio object embedded in another worksheet. The following
Worksheet Document part-relationship item contains relationships to two Embedded Object parts (one each
for the video and audio), which are stored in the ZIP items ../embeddings/embeddedObjectN.bin:

<Relationships xmlns="..">
<Relationship Id="rId2"
Type="http://../oleObject" Target="../embeddings/embeddedObjectl.bin"/>
<Relationship Id="rId3"
Type="http://../oleObject" Target="../embeddings/embeddedObject2.bin"/>
</Relationships>

end example]

A PresentationML document package is permitted to contain zero or more Embedded Object parts, each of
which shall be the target of a relationship in a Slide part-relationship item.

[Example: Consider the case in which a PresentationML document has embedded in it one video object and
one audio object on one slide, and another audio object embedded on another slide. The following Slide part-

147

1

O 00 N o U A~ W

11

12
13
14

15
16

17

18
19

20

21

22
23
24
25

26
27
28
29

Shared

relationship item contains relationships to two Embedded Object parts (one each for the video and audio),
which are stored in the ZIP items ../embeddings/embeddedObjectN.bin:

<Relationships xmlns="..">
<Relationship Id="rId6"
Type="http://../oleObject”
Target="../embeddings/embeddedObjectl.bin"/>
<Relationship Id="rId7"
Type="http://../oleObject”
Target="../embeddings/embeddedObject2.bin"/>
</Relationships>

end example]

An Embedded Object part may be located within or external to the package containing the source relationship
(expressed syntactically, the TargetMode attribute of the Relationship element may be Internal or
External).

An Embedded Object part is permitted to have an explicit relationship to the following parts defined by this
Standard:

e Hyperlink (§15.3)

An Embedded Object part shall not have any implicit or explicit relationships to other parts defined by this
Standard.

15.2.10 Embedded Package Part

Content Type: | application/vnd.openxmlformats-officedocument.package

Root not applicable

Namespace:

Source http://schemas.openxmlformats.org/officeDocument/2006/relationships/package
Relationship:

An instance of this part type contains a complete package. For example, a WordprocessingML document might
contain a SpreadsheetML or PresentationML document, in which case, the WordprocessingML document
package would contain an embedded package part that defined that SpreadsheetML or PresentationML
document.

A package is permitted to contain zero or more Embedded Package parts, and each such part shall be the
target of an explicit relationship from a Chart (§14.2.1), Comments (§11.3.2), Endnotes (§11.3.4), Footer
(§11.3.6), Footnotes (§11.3.7), Header (§11.3.9), or Main Document (§11.3.10) part in a WordprocessingML
package; a Chart (§14.2.1), or Worksheet part (§12.3.24) in a SpreadsheetML package; or a Chart (§14.2.1),

148

10
11
12
13
14
15
16

17

18
19
20

21
22

23

24
25

26

27
28
29
30
31

32

Shared

Handout Master (§13.3.3), Notes Slide (§13.3.5), Notes Master (§13.3.4), Slide (§13.3.8), Slide Layout (§13.3.9),
Slide Master (§13.3.10) part in a PresentationML package.

[Example: The following Presentation part-relationship item contains relationships to two Embedded Package
parts: one is a SpreadsheetML package, which is stored in the ZIP item embeddings/Worksheet1.xlsx, the other
is a PresentationML package, which is stored in the ZIP item embeddings/Presentation2.pptx. The image files
are used as document display placeholders if the consumer cannot handle the embedded package type:

<Relationships xmlns="..">
<Relationship Id="rId4"
Type="http://../image" Target="media/imagel.emf"/>
<Relationship Id="rId5"
Type="http:package" Target="embeddings/Worksheetl.xlsx"/>
<Relationship Id="rId6"
Type="http://../image" Target="media/image2.emf"/>
<Relationship Id="rId7"
Type="http://../package"” Target="embeddings/Presentation2.pptx"/>
</Relationships>

end example)

An Embedded Package part may be located within or external to the package containing the source
relationship (expressed syntactically, the TargetMode attribute of the Relationship element may be Internal
or External).

An Embedded Package part is permitted to have an explicit relationship to the following parts defined by this
Standard:

e Hyperlink (§15.3)

An Embedded Package part shall not have any implicit or explicit relationships to other parts defined by this
Standard.

15.2.11 File Properties

There are three kinds of file properties: , core, custom, and extended. The core file properties of a package
enable users to discover, get, and set common sets of properties from within that package, regardless of
whether it’s a WordprocessingML, SpreadsheetML, or PresentationML package. Extended file properties are
specific to Office Open XML packages, while custom file properties are defined by the user, with each custom
file property having a name, a value, and a type.

15.2.11.1 Core File Properties Part

Content Type: | application/vnd.openxmlformats-package.core-properties+xml

Root http://schemas.openxmlformats.org/package/2006/metadata/core-properties
Namespace:

149

10
11
12

13

14

15

16
17
18
19
20
21

22

23
24

25
26

27

Shared

Source http://schemas.openxmlformats.org/officedocument/2006/relationships/metadata/core-
Relationship: properties

Core file properties enable users to discover, get, and set common sets of properties within packages. (These
properties include creator name, creation date, title, and description.) These properties are stored using the
appropriate Dublin Core properties whenever possible.

A package shall contain at most one Core File Properties part, and that part shall be the target of a relationship
in the package-relationship item for the document.

[Example: The following PresentationML's package-relationship item contains one relationship, for the Core
File Properties part stored in the ZIP item core.xml):

<Relationships xmlns="..">
<Relationship Id="rId3"
Type="http://../core-properties" Target="docProps/core.xml"/>
</Relationships>

end example)
The root element for a part of this content type shall be coreProperties.

[Example:

<cp:coreProperties xmlns:cp=".." xmlns:dc=".." >
<dc:title>Example File</dc:title>
<dc:creator>Tristan Davis</dc:creator>
<cp:lastModifiedBy>Tristan Davis</cp:lastModifiedBy>
<cp:revision>1</cp:revision>

</cp:coreProperties>

end example)

A Core File Properties part shall be located within the package containing the source relationship (expressed
syntactically, the TargetMode attribute of the Relationship element shall be Internal).

A Core File Properties part shall not have implicit or explicit relationships to other parts defined by this
Standard.

15.2.11.2 Custom File Properties Part

Content Type: | application/vnd.openxmlformats-officedocument.custom-properties+xml

Root http://schemas.openxmliformats.org/officeDocument/2006/custom-properties
Namespace:

150

10
11
12

13

14

15
16
17
18

20
21
22
23
24
25
26
27
28
29
30
31
32

33

Shared

Source http://schemas.openxmlformats.org/officeDocument/2006/relationships/custom-properties
Relationship:

An instance of this part contains the names of custom file properties that apply to the package, their values,
and the types of those values. A custom file property might be the name of the client for whom the document
was prepared, a date/time on which some event happened, a document number, or some Boolean status flag.

A package shall contain at most one Custom File Properties part, and that part shall be the target of a
relationship in the package-relationship item for the document.

[Example: The following PresentationML's package-relationship item contains a relationship to a Custom File
Properties part, stored in the ZIP item docProps/custom.xmil:

<Relationships xmlns="..">

<Relationship Id="rId4"

Type="http://../custom-properties" Target="docProps/custom.xml"/>
</Relationships>

end example)
The root element for a part of this content type shall be Properties.

[Example: Here's some content markup from a WordprocessingML document, which contains four custom
properties: Client, having a text value of "ACME Corp."; Document number, having a numeric value of

1543; Recorded date, having a date/time value of 2005-12-01; and Special processing needed,
having a Boolean value of false:

<Properties .. xmlns:vt=".">
<property fmtid="{D5C..9AE}" pid="2" name="Client">
<vt:lpwstr>ACME Corp.</vt:lpwstr>
</property>
<property fmtid="{D5C..9AE}" pid="3" name="Document number">
<vt:14>1543</vt:i4>
</property>
<property fmtid="{D5C..9AE}" pid="4" name="Recorded date">
<vt:filetime>2005-12-01T05:00:00Z</vt:filetime>
</property>
<property fmtid="{D5C..9AE}" pid="5" name="Special processing needed">
<vt:bool>false</vt:bool>
</property>
</Properties>

end example)

151

10
11

12

13
14
15
16

17

18

19

21
22
23
24
25

Shared
A Custom File Properties part shall be located within the package containing the source relationship (expressed
syntactically, the TargetMode attribute of the Relationship element shall be Internal).

A Custom File Properties part shall not have implicit or explicit relationships to other parts defined by this
Standard.

15.2.11.3 Extended File Properties Part

Content Type: | application/vnd.openxmlformats-officedocument.extended-properties+xml

Root http://schemas.openxmlformats.org/officeDocument/2006/extended-properties
Namespace:
Source http://schemas.openxmliformats.org/officeDocument/2006/relationships/extended-

Relationship: properties

An instance of this part contains properties specific to an Office Open XML document.[Example: A
PresentationML document specifies the number of slides in this presentation when last saved by a producer.
end example]

A package shall contain at most one Extended File Properties part, and that part shall be the target of a
relationship in the package-relationship item for the document.

[Example:

<Relationships xmlns="..">
<Relationship Id="rId4"
Type="http://../extended-properties"” Target="docProps/app.xml"/>
</Relationships>

end example]
The root element for a part of this content type shall be Properties.
[Example: Here's some content markup from a WordprocessingML document:

<Properties ..>
<Template>Normal.dotm</Template>
<TotalTime>0</TotalTime>
<Pages>1</Pages>
<Words>3</Words>
<Characters>22</Characters>

152

N o o A wWwN

<Application>Sample Producer</Application>
<DocSecurity>0</DocSecurity>
<Lines>1</Lines>
<Paragraphs>1</Paragraphs>

<AppVersion>12.0000</AppVersion>

</Properties>
here's some content markup from a SpreadsheetML document:

<Properties ..>

<Application>Sample Producer</Application>
<HeadingPairs>

</HeadingPairs>
<TitlesOfParts>

</TitlesOfParts>
<Company>Consultant</Company>

</Properties>
and here's some content markup from a PresentationML document:

<Properties ..>

<Template>ppt_template_sdwest@5</Template>
<TotalTime>3166</TotalTime>
<Words>37</Words>

<Application>Sample Producer</Application>

<PresentationFormat>On-screen Show</PresentationFormat>

<Paragraphs>15</Paragraphs>
<Slides>2</Slides>
<Notes>2</Notes>

<HeadingPairs>

</HeadingPairs>
<TitlesOfParts>

</TitlesOfParts>

</Properties>

end example)

Shared

153

10
11

12

13
14

15
16

17

18

Shared
A Extended File Properties part shall be located within the package containing the source relationship
(expressed syntactically, the TargetMode attribute of the Relationship element shall be Internal).

An Extended File Properties part shall not have implicit or explicit relationships to any other part defined by
this Standard.

15.2.12 Font Part

Content Type: | application/x-fontdata
application/x-font-ttf

Root not applicable

Namespace:

Source http://schemas.openxmlformats.org/officeDocument/2006/relationships/font
Relationship:

An instance of this part type contains a given font embedded directly into the document. (This is useful when
using custom fonts or fonts that are not widely distributed.)

Fonts stored in a Font part can be stored in one of two formats, identified by the associated content type:

e application/x-fontdata specifies that the font shall be stored as a bitmapped font (each glyph is
stored as a raster image)
e application/x-font-ttf specifies that the font shall be stored in the TrueType or OpenType format

A package shall contain zero or more Font parts, and for each that exists, that part shall be the target of an
explicit relationship in the Font Table (§11.3.5), or Presentation (§13.3.6) part.

A Font part shall be located within the package containing the source relationship (expressed syntactically, the
TargetMode attribute of the Relationship element shall be Internal).

A Font part shall not have implicit or explicit relationships to other parts defined by this Standard.

15.2.13 Image Part

Content Type: | Any supported image type.

[Note: Some example content types are:

image/gif http://www.w3.0org/Graphics/GIF/spec-gif89a.txt
image/png | I1SO/IEC 15948:2003 http://www.libpng.org/pub/png/spec/

image/tiff http://partners.adobe.com/public/developer/tiff/index.html#spec

image/pict | http://developer.apple.com/documentation/mac/QuickDraw/QuickDraw-
2.html

image/jpeg | http://www.w3.org/Graphics/JPEG/

end note.]

154

http://developer.apple.com/documentation/mac/QuickDraw/QuickDraw-2.html
http://developer.apple.com/documentation/mac/QuickDraw/QuickDraw-2.html

10
11

12
13
14
15

16

17
18

19

20

21

22
23

Shared

Root Not applicable

Namespace:

Source http://schemas.openxmlformats.org/officeDocument/2006/relationships/image
Relationship:

An image can be stored in a package as a ZIP item. Image ZIP items shall be identified by an image part
relationship and the appropriate content type.

A package is permitted to contain zero or more Image parts, and each such part shall be the target of an
explicit relationship from a Comments (§11.3.2), Endnotes (§11.3.4), Footer (§11.3.6), Footnotes (§11.3.7),
Header (§11.3.9), or Main Document (§11.3.10) part in a WordprocessingML package; a VML Drawing
(§15.2.17) part in a SpreadsheetML package; or a Handout Master (§13.3.3), Notes Slide (§13.3.5), Notes
Master (§13.3.4), Slide (§13.3.8), Slide Layout (§13.3.9), Slide Master (§13.3.10), or a VML Drawing (§15.2.17)
part in a PresentationML package.

[Example: The following PresentationML's package-relationship item contains one relationship, for the slide
template jpeg image stored in the ZIP item ../media/imagel.jpeg:

<Relationships xmlns="..">
<Relationship Id="rId8"
Type="http://../image" Target="../media/imagel.jpeg"/>
</Relationships>

end example)

An Image part may be located within or external to the package containing the source relationship (expressed
syntactically, the TargetMode attribute of the Relationship element may be Internal or External).

An Image part shall not have implicit or explicit relationships to other parts defined by this Standard.

15.2.14 Printer Settings Part

Content Type: | application/vnd.openxmlformats-officedocument.spreadsheetml.printerSettings (in
SpreadsheetML documents)

application/vnd.openxmlformats-officedocument.wordprocessingml.printerSettings (in
WordprocessingML documents)

Root not applicable

Namespace:

Source http://schemas.openxmliformats.org/officeDocument/2006/relationships/printerSettings
Relationship:

An instance of this part type contains information about the initialization and environment of a printer or a
display device. The layout of this data structure is application-defined. [Example: An Office Open XML producer

155

10

11
12

13
14
15
16
17

18

19
20

21
22

23

Shared

on Windows might store the DEVMODE structure defined here:
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/gdi/prntspol_8nle.asp, while an application
on the Mac OS might choose to store the print record defined here:
http://developer.apple.com/documentation/Carbon/Reference/CarbonPrintingManager_Ref/Reference/refer
ence.html. end example]

A SpreadsheetML package is permitted to contain at most one Printer Settings part per Chartsheet,
Dialogsheet, or Worksheet part, and that part shall be the target of an implicit relationship from a Chartsheet
(§12.3.2), Dialogsheet (§12.3.7), or Worksheet (§12.3.24) part. A WordprocessingML package is permitted to
contain zero or more Printer Settings parts, one per sectPr element, each a target of an explicit relationship
from a Main Document (§11.3.10) or Glossary Document (§11.3.8) part.

[Example: The following SpreadsheetML Worksheet part-relationship item contains a relationship to a Printer
Settings part, which is stored in the ZIP item ../printerSettings/printerSettingsl.bin:

<Relationships xmlns="..">
<Relationship Id="rId4"
Type="http://../printerSettings"
Target="../printerSettings/printerSettingsl.bin"/>
</Relationships>

end example]

A Printer Settings part shall be located within the package containing the source relationship (expressed
syntactically, the TargetMode attribute of the Relationship element shall be Internal).

A Printer Settings part shall not have implicit or explicit relationships to any other part defined by this
Standard.

15.2.15 Thumbnail Part

Content Type: | Any supported image type.

[Note: Some example content types are:

image/gif http://www.w3.0org/Graphics/GIF/spec-gif89a.txt
image/png | ISO/IEC 15948:2003 http://www.libpng.org/pub/png/spec/

image/tiff http://partners.adobe.com/public/developer/tiff/index.html#spec

image/pict | http://developer.apple.com/documentation/mac/QuickDraw/QuickDraw-

2.html
image/jpeg | http://www.w3.org/Graphics/JPEG/
end note.]
Root Not applicable

Namespace:

156

http://msdn.microsoft.com/library/default.asp?url=/library/en-us/gdi/prntspol_8nle.asp
http://developer.apple.com/documentation/Carbon/Reference/CarbonPrintingManager_Ref/Reference/reference.html
http://developer.apple.com/documentation/Carbon/Reference/CarbonPrintingManager_Ref/Reference/reference.html
http://developer.apple.com/documentation/mac/QuickDraw/QuickDraw-2.html
http://developer.apple.com/documentation/mac/QuickDraw/QuickDraw-2.html

10
11
12
13

14

15
16

17

18

Shared

Source http://schemas.openxmlformats.org/package/2006/relationships/metadata/thumbnail
Relationship:

To help end-users identify parts of a package or the package as a whole, images, called thumbnails, may be
stored in that package. Each thumbnail image is generated by the package producer and is stored in the
package as a ZIP item.

Thumbnail ZIP items shall be identified by either a package-relationship item or a part-relationship item.
Packages shall not contain more than one thumbnail relationship associated with the package as a whole, or
more than one thumbnail relationship per package part.

[Example: The following PresentationML's package-relationship item contains one relationship, for the
metafile image stored in the ZIP item thumbnail.wmf:

<Relationships xmlns="..">
<Relationship Id="rId2"
Type="http://../thumbnail” Target="docProps/thumbnail.wmf"/>
</Relationships>

end example)

A Thumbnail part shall be located within the package containing the source relationship (expressed
syntactically, the TargetMode attribute of the Relationship element shall be Internal).

A Thumbnail part shall not have implicit or explicit relationships to other parts defined by this Standard.

15.2.16 Video Part

Content Type: | Any supported video type.

[Note: Some example content types are:

video/x-ms-asf http://www.microsoft.com/windows/windowsmedia/forpros/format/a
sfspec.aspx

video/avi http://www.the-labs.com/Video/odmlff2-avidef.pdf
video/mpg ISO/IEC 13818
video/mpeg ISO/IEC 13818

video/x-ms-wm | http://www.microsoft.com/windows/windowsmedia/forpros/format/a
sfspec.aspx

video/quicktime | http://developer.apple.com/softwarelicensing/agreements/quicktime.h
tml

end note]

Root not applicable
Namespace:

157

http://www.microsoft.com/windows/windowsmedia/forpros/format/asfspec.aspx
http://www.microsoft.com/windows/windowsmedia/forpros/format/asfspec.aspx
http://www.microsoft.com/windows/windowsmedia/forpros/format/asfspec.aspx
http://www.microsoft.com/windows/windowsmedia/forpros/format/asfspec.aspx
http://developer.apple.com/softwarelicensing/agreements/quicktime.html
http://developer.apple.com/softwarelicensing/agreements/quicktime.html

10

11
12
13
14
15

16

17

18
19

20

21

22

23
24
25

26
27

Shared

Source http://schemas.openxmlformats.org/officeDocument/2006/relationships/video
Relationship:

An instance of this part type contains a video file.

A PresentationML package is permitted to contain zero or more Video parts, each of which shall be the target
of an explicit relationship in a Handout Master (§13.3.3), Notes Slide (§13.3.5), Notes Master (§13.3.4), Slide
(§13.3.8), Slide Layout (§13.3.9), or Slide Master (§13.3.10) part. A WordprocessingML package is permitted to
contain zero or more Video parts, each of which shall be the target of an explicit relationship from a Comments
(§11.3.2), Endnotes (§11.3.4), Footer (§11.3.6), Footnotes (§11.3.7), Header (§11.3.9), or Main Document
(§11.3.10) part.

[Example: The following Slide part-relationship item contains a relationship to a Video part, which is stored as
the file E:\Video demo.avi:

<Relationships xmlns="..">
<Relationship Id="rId2"
Type="http://../video"
Target="file:///E:\Video%20demo.avi" TargetMode="External"/>
</Relationships>

end example]
A Video part is not stored as XML; instead, it involves a relationship target that is a video clip.

A Video part may be located within or external to the package containing the source relationship (expressed
syntactically, the TargetMode attribute of the Relationship element may be Internal or External).

A Video part shall not have implicit or explicit relationships to other parts defined by this Standard.

15.2.17 VML Drawing Part

Content Type: | application/vnd.openxmlformats-officedocument.vmIDrawing

Root not applicable

Namespace:

Source http://schemas.openxmliformats.org/officeDocument/2006/relationships/vmIDrawing
Relationship:

An instance of this part type contains markup in the Vector Markup Language (VML) syntax, which is used to
provide an alternative image representation of objects stored in a SpreadsheetML or PresentationML
document.

[Note: The VML format is a legacy format originally introduced with Office 2000 and is included and fully
defined in this Standard for backwards compatibility reasons. The DrawingML format is a newer and richer

158

10

11
12
13
14

15

16
17

18

19
20
21
22
23
24

25

26
27

28

29

30

31

Shared

format created with the goal of eventually replacing any uses of VML in the Office Open XML formats. VML
should be considered a deprecated format included in Office Open XML for legacy reasons only and new
applications that need a file format for drawings are strongly encouraged to use preferentially DrawingML. end
note]

A package is permitted to contain zero or more VML Drawing parts, each of which shall be the target of an
explicit relationship in a Handout Master (§13.3.3), Notes Slide (§13.3.5), Notes Master (§13.3.4), Slide
(§13.3.8), Slide Layout (§13.3.9), or Slide Master (§13.3.10) part in a PresentationML document; or a
Worksheet part (§12.3.24) in a SpreadsheetML document.

[Example: The following SpreadsheetML's package-relationship item contains one relationship, for the VML
Drawing part stored in the ZIP item ../drawings/drawingl.vml:

<Relationships xmlns="..">
<Relationship Id="rId8"
Type="http://../vmlDrawing" Target="../drawings/drawingl.vml"/>
</Relationships>

end example)

The root element for a part of this content type shall be xml in the null namespace, encapsulating an arbitrary
amount of VML markup as defined by this Standard.

[Example: Consider the following VML Drawing part:

<xml>
<v:shape ...>

</v:shape>
</xml>
end example]

A VML Drawing part shall be located within the package containing the source relationship (expressed
syntactically, the TargetMode attribute of the Relationship element shall be Internal).

A VML Drawing part is permitted to have explicit relationships to the following parts defined by this Standard:
e Image (§15.2.13)

A VML Drawing part shall not have implicit or explicit relationships to any other part defined by this Standard.

15.3 Hyperlinks

Source http://schemas.openxmliformats.org/officeDocument/2006/relationships/hyperlink
Relationship:

159

O 00 N O

11

12

13
14

15

Shared

A hyperlink can be stored in a package as a relationship. Hyperlinks shall be identified by containing a target
which specifies the destination of the given hyperlink.

[Example: The following WordprocessingML Footnote part's relationship part contains one relationship, for the
hyperlink http://schemas.openxmlformats.org/wordprocessingml/:

<Relationships xmlns="..">
<Relationship Id="rId1"
Type="http://../hyperlink"
Target="http://schemas.openxmlformats.org/wordprocessingml/"
TargetMode="External"/>
</Relationships>

end example]

A hyperlink target may be located within or external to the package containing the source relationship
(expressed syntactically, the TargetMode attribute of the Relationship element may be Internal or
External).

160

10

11
12

13
14

15
16

17
18

19
20

21
22
23

24
25

26
27

28
29

Shared

Annex A. Bibliography

This clause is informative.
Character Sets from IANA, as specified at http://www.iana.org/assighments/character-sets
PANOSE Classification Guide, Version 1.2, Hewlett Packard Co., 1992.

RFC 2119, Bradner, Scott, 1997: “Key words for use in RFCs to Indicate Requirement Levels.”
http://www.ietf.org/rfc/rfc2119.txt.

RFC 2045, Borenstein, N., and N. Freed. “Multipurpose Internet Mail Extensions (MIME) Part One: Format of
Internet Message Bodies.” The Internet Society. 1996. http://www.rfc-editor.org

RFC 2616, Berners-Lee, T., R. Fielding, H. Frystyk, J. Gettys, P. Leach, L. Masinter, and J. Mogul. “Hypertext
Transfer Protocol—HTTP/1.1.” The Internet Society. 1999. http://www.rfc-editor.org

RFC 3066, Alvestrand, H. “Tags for the Identification of Languages.” The Internet Society. 2001.
http://www.rfc-editor.org

RFC 3339, Klyne, G. and C. Newman “Date and Time on the Internet: Timestamps.” The Internet Society. 2002.
http://www.rfc-editor.org

RFC 3629, Yergeau, F. “UTF-8, a transformation format of ISO 10646.” The Internet Society. 2003.
http://www.rfc-editor.org

RFC 3986, Berners-Lee, T., R. Fielding, and L. Masinter. “Uniform Resource Identifier (URI): Generic Syntax.”
The Internet Society. 2005. http://www.rfc-editor.org

The Unicode Consortium. The Unicode Standard, Version 4.0, defined by: The Unicode Standard, Version 4.0
(Reading, MA, Addison-Wesley, 2003. ISBN 0-321-18578-1).

XML, Bray, Tim, Eve Maler, Jean Paoli, C. M. Sperberg-McQueen, and Frangois Yergeau (editors). “Extensible
Markup Language (XML) 1.0,” Third Edition. World Wide Web Consortium. 2004.
http://www.w3.0rg/TR/2004/REC-xml-20040204/xm|11-20040204/)

XML Base, Marsh, Jonathan. “XML Base.” World Wide Web Consortium. 2001.
http://www.w3.0rg/TR/2001/REC-xmlbase-20010627/

XML Namespaces, Bray, Tim, Dave Hollander, Andrew Layman, and Richard Tobin (editors). “Namespaces in
XML 1.1.” World Wide Web Consortium. 2004. http://www.w3.0rg/TR/2004/REC-xml-names11-20040204/

XML Path Language Specification, Version 1.0, W3C Recommendation 16 November 1999
http://www.w3.0rg/TR/xpath

161

http://www.w3.org/TR/xpath

Shared
XML Schema Part 0: Primer Second Edition, W3C Recommendation 28 October 2004
http://www.w3.org/TR/xmlschema-0/

XML Schema Part 1: Structures Second Edition, W3C Recommendation 28 October 2004
http://www.w3.0rg/TR/xmlschema-1/

XML Schema Part 2: Datatypes Second Edition, W3C Recommendation 28 October 2004
http://www.w3.0rg/TR/xmlschema-2/

.ZIP File Format Specification from PKWARE, Inc., as specified in appnote, the Application Note on the Zip file
format, at http://www.pkware.com.

End of informative text.

162

O 0 N o U b

11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43

Annex B. Index

This annex is informative.

Additional Characteristics part.......ccccceeevveeeenenen. 137
Alternative Format Import partccccceevcveeeennnnen. 28
ANIMATION ceiiiiiiiiee e e 13
ANNEBX ceiiiiiiieeiee ettt e et e s e e e tre s eeeeeene 10
APPHCAtioN...cueeei e 6
Application-Defined File Properties part 152
T80 =Yg ol PR 13
10 [o T PR 13
AUdiO Part. ..o 138
DENAVION (i 6
implementation-defined..........ccccooeeevciieeeecnnnnnn. 6
locale-specifiC.....ceeeeccieeeicieee e, 6
UNSPECITIEA ..vviieiciiieecceee e 6
Bibliography part.......ccccceeciieeiciieeeccieee e 139
DOAY....eiiiii e 11
Calculation Chain part.......ccccceeeeciieeecciiee e, 63
(o= | 12, 14,59
alignment ..., 13
oY) o [T RS 13
(oL} o] oSS 13
FONT et 13
formattingccveeeeeiiei e 13
cell referencCe.. . e 13,59
(6] 0 T= o N 14, 59
Chart Drawing part.....cccccceeeeciveeeeciieeeescieee e 125
Chart Part ... 123
Chartsheet partccceecvieiivciiee e 64
color schemMeuveeeeeeereieaae 14,132,133
COIUMN .ttt 12, 14,59
(00011 011 1=] o} U 13, 24, 59, 98
Comment Authors part......cccccceeeeiiieccciiieeeeeee, 102
Comments part
PresentationML........cccueeiiiiiiiiiiiiiiieeeee e 103
SpreadsheetMLcccceeeeccciiiiiiieeeeccceeeee e, 65
WordprocessingMLccceeoveeciiveeeeeeeeeccniineeen. 29
CONFOrMANCE .o 2
application. ... 3
dOCUMENT .ot 3
CONNECEION...ci i e 59
Connections Part......cccccccceeeeeeeeeneaees 67

a4
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83

Shared

(o101 1118 [0 1 =] PO TPTOR PP 11
[ole] 14 (o] IS SRR 136
Core File Properties part.....ccccoceceeeercieeeiniieeennnns 149
Custom File Properties part.......cccceevveeircveeennnns 150
CUSTOM MArkUp ..cceeveieee e 12
Custom Property part......ccceeeieiiiiiiiee, 68
Custom XML data propertyccccceeeeveeeevveeeeennen. 15
Custom XML Data Storage part...........cceeeeeeeennnn. 140
Custom XML Data Storage Properties part......... 141
Custom XML Mappings partccccceeeeeeernrcnneneenn. 69
(o [T T={ =1 1 1 [UOt 122
diagram Color.....coovviiiiicee e 14
Diagram Colors part......ccccceeecveeeeecieeececiiee e, 126
diagram data.......cccoccvieiiciieec e, 14
Diagram Data partcuevvevvvveeeeeereeneneeneeeneennnnn. 127
diagram 1ayout........ccoeeeiiiiiec e 14
Diagram Layout Definition part.........cccccueeenneee. 128
diagram styleccooooeriiciiie e, 14
Diagram Style part.......cccceeecieeeeecieee e e 130
Dialogsheet partccccccveeeeciieeeeciiee e 70
Digital Signature Origin part........cccceeeevvveeeennnen. 141
Digital Signature XML Signature part 142
document setting.......ccceecveeeivciee e, 24
Document Settings part.......ccccceevvvvvciniveeeeeeninnnnnns 31
document template.....cccccoeveiicieiiiicee e, 53
docUMENt LYPE wevveeieiieiecee e 6
DrawingML......ccccuviiieieiiiniiiiieeeee e esiiieeeeee e 6,14
effect... 14, See format scheme, See format scheme
Embedded Control Persistence part................... 143
Embedded Object partccccccveeevecieeeecciiee e, 146
Embedded Package part......cccccceeeeeeeccciiiieenneennn. 148
Endnotes partccceeeee e 33
EXAMPIE e 10
EXEENSION ..t 6
External WorkbooK..........cceevveiiniiiiiiniiiieciiiieenn 926
External Workbook References part 73
L1 L PSS 12
field iNStruction........cccveeeeeceeceece e, 12
field reSUlt. ..o, 12
file Property.....ccceeeeeciieeeeceeeeeceee e, 15, 149

163

O 00 N o b W N P

A D D D D D D D DWW W WWWWWWWRNNRLENNNRNNRNNNRRRRBR B B R B g
© N O 0 B W N R O OV ®O®NO OB WNROOOONOOO®OD_DWNIRO®OONOO OV B WN R O

application-defined . See Application-Defined File
Properties part

core 15, 149, See Core File Properties part
custom........ 15, 149, See Custom Properties part
extended ..o 15, 149
FONT i 14
Fontpart....ccoooiii, 154
font SCheME...eeeee 132,133
Font Table part......ccccceeeceee e 35
L{0T0)1 (<] PSR 12
Footerpart......cccooiiiii, 36
Footnotes part........cccceeviviii, 38
format schemecceeeeeeveeieee 132,133
FOrMUIE .. 13,59
FraME o 54
FrameSet...uuveeeee e 54
FUNCHION ., 13,59
glossary documentccccveeeeciieeeeciiee e, 24
Glossary Document partccccceeecveeeencieeeescnneenn. 41
hanNdoUt ... 13,98
handout Master.....cccccveeiiciiiec e 13
Handout Master partcccccovevveeiiicieee e 104
Y=Y [0 [T o UUPRROt 12
Header partcccceeeeieee et 43
HTML Publish Location........cccceeveeeiiciieeiiiciieeenns 119
hyperlink.......ccooeceee i, 12, 13, 159
IEC.. See International Electrotechnical Commission
[= =T 13,154
informative teXt.......cccoveeeieeiiee e, 2
International Electrotechnical Commission............ 9
International Organization for Standardization...... 9
(1] 0 See International Organization for
Standardization
ISO/IEC 10646.....cueecereceieeieeieeieesieesreesresaeereeeeens 5
1Yo 11 | USSPt 13
mail merge data SoUrCe......cccvvveiieeeciiiee e 56
mail merge header data sourcecoceeevcvveeennnns 57
Main DocuUmMENT Part.....cccccceeevrevciiieeeeeeeseriieneeee 46
master doCUMEeNt.........oovvvvvvvviiieiiieiiiieieeeeeeeees 24,55
Metadata part.....cccccceeeeicieee e, 75
NOrMative teXt...ccveeeiiiiieiieeeeeee e, 2,10
1) =IOt 10, 13, 98
NOTES MASTEN ceeiiiiiiiiiiiiiieiiieieeeeeeeeereeeeeeeereeeeeeeeeeeeene 13
Notes Master part.......ccccceeeviiiiiieeee, 106
Notes Slide part.....ccccceeeeecieeeiciieee e 107
YUl 0] oT=T o T o - USSP 12
Numbering Definitions partcccccceeeeecieeeeennnen. 48
Office Open XMLcccocvieeeeciiieeccieee e viii, 7

49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96

Shared

Valid oo 7
PACKAEE ..veeeirieee ettt 7,11
embedded........coviiiciiiiic 7
package-relationship ZIP itemcccccovcvveeeiiinennn. 11
PArAZrAPN oo 11
S | PP PPPPPPPPPPPPPPRE 11
Additional Characteristics.............. See Additional
Characteristics part
Alternative Format Import............ See Alternative
Format Import part
Application-Defined File Properties................ See
Application-Defined File Properties part
AU See Audio part
Bibliography......cc.cccuveeuneee. See Bibliography part
Calculation Chain......... See Calculation Chain part
Chart ..o, See Chart part
Chart Drawing...........c...... See Chart Drawing part
Chartsheetccccceeeeeeeennnneenn. See Chartsheet part

Comment Authors See Comment Authors part
Comments

PresentationML See Comments part,
PresentationML
SpreadsheetML................ See Comments part,
SpreadsheetML
WordprocessingML.......... See Comments part,
WordprocessingML
Connections..........cccoeeee. See Connections part
Core File Properties See Core File Properties part
Custom File Properties See Custom File
Properties part
Custom Property......... See Custom Property part

Custom XML Data Storage.See Custom XML Data
Storage part

Custom XML Data Storage PropertiesSee Custom
XML Data Storage Properties part

Custom XML Mappings.............. See Custom XML
Mappings part

Diagram Colors See Diagram Colors part

Diagram Data.......ccceeveveeeee See Diagram Data part

Diagram Layout Definition.... See Diagram Layout
Definition part

Diagram Style.......cccceeeuuue. See Diagram Style part

Dialogsheet.......ccccccvvveeunenn. See Dialogsheet part

Digital Signature Origin........ See Digital Signature
Origin part

Digital Signature XML Signature........... See Digital

Signature XML Signature part
Document Settings .. See Document Settings part

164

O 00 N o b W N P

A D D D D D D D DWW W WWWWWWWRNNRLENNNRNNRNNNRRRRBR B B R B g
© N O 0 B W N R O OV ®O®NO OB WNROOOONOOO®OD_DWNIRO®OONOO OV B WN R O

Embedded Control Persistence.... See Embedded
Control Persistence part

Embedded Object...... See Embedded Object part
Embedded Package .See Embedded Package part
Endnotesccocvveeeeeeeecinnenennn. See Endnotes part
External Workbook References......... See External
Workbook References part
FOnt ., See Font part
Font Table.......cccoveevereeeennnen. See Font Table part
Footer.....oooooiiiiiiiii, See Footer part
Footnotes.........cccceviiiinnnnnnnn, See Footnotes part
Glossary Document .See Glossary Document part
Handout Master........... See Handout Master part
Header......coooeeecieeiecieee e See Header part
Main Document See Main Document part
Metadata.....cccceeeeeeeecnnrreennnnnn, See Metadata part
Notes Master..........cceueu..e. See Notes Master part
Notes Slidecvveeeeeeeennnnene, See Notes Slide part
Numbering Definitions................. See Numbering
Definitions part
Pivot Table......ccccceeeeeeennnnenn, See Pivot Table part
Pivot Table Cache Definition......... See Pivot Table

Cache Definition part
Pivot Table Cache Records See Pivot Table Cache
Records part

Presentation....................... See Presentation part

Presentation Properties............. See Presentation
Properties part

Printer Settings.............. See Printer Settings part

Query Table.......cccvveeennneen. See Query Table part

Shared String Table . See Shared String Table part
Shared Workbook Revision Headers...See Shared
Workbook Revision Headers part

Shared Workbook Revision Log........... See Shared
Workbook Revision Log part
Shared Workbook User Data............... See Shared

Workbook User Data part
Single Cell Table Definitions.See Single Cell Table
Definitions part

SHAE e See Slide part
Slide Layoutcccccuveeeenneen. See Slide Layout part
Slide Mastercccueeeneee. See Slide Master part
Slide Synchronization Data..................... See Slide
Synchronization Data part
Style Definitions See Style Definitions part
SEYIES e, See Styles part
Table Definition............. See Table Definition part
Table Stylescvveeeeecnrnnnennn. See Table Styles part

49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96

Shared

Theme ., See Theme part

Theme Override............ See Theme Override part

User Defined Tags......See User Defined Tags part

LYo [=To TSR See Video part

View Properties See View Properties part

Volatile DependenciesSee Volatile Dependencies

part

Web Settings........cccccuveeee. See Web Settings part

Workbookcoceeeiiiieennnnn. See Workbook part

Worksheetcccceeevveeennnen. See Worksheet part
part-relationship item.......ccccoveeviiiiieiciieeecien, 11
[T [o1 (U1 = TP PPPPPPPPPIR 14
PIVOL table.....evveeeeieeeeee e 59
Pivot Table Cache Definition part........cccceeeuuneee. 79
Pivot Table Cache Records part.......ccccccvveeeennneenn. 81
Pivot Table part......ccccecvveeieciieeeciieec e 78
Presentationccceeeeeveeeciiieeee e 13,98

CUSTOM it 13
Presentation part.....ccccccvvvcviieeeeeeienniiiiieeeeeeennn 109
Presentation Properties part....cccccccoeecvvveeeeeennn. 111
PresentatioNMLcevvvvvivveeeivieeeieeeeneeeereenennns 7,13
Printer Settings part.......ccoeccviveeeeiiiinniiiiieeeeeeenn, 155
(o] oo [V 1ol =] USRI 11
PrOPEITY .ottt e e 11
Query Table part......cccccevecieee e 82
FAtioNAle. .o 10
FEfEIENCE covieicee et 10
relationship.....ccooccveei e, 7,11

EXPIICIT. cee e 7,18

(10 0] o] 1ol | AR 7,18
relationships part......cccoeeeecieee e 7
[0).V N 12, 14, 59
U ettt e et e e e e e et e e e e e e e e snnrereeeeeeesennnne 11
Y=o { (0] o NPT 12,24
SHAPE oo 14
Shared String Table part......cccccoceevvcevicciee e, 83
Shared Workbook Revision Headers part............. 84
Shared Workbook Revision Log part 85
Shared Workbook User Data partcccuveeenneeee. 87
Single Cell Table Definitions part.........cccccveeenneee. 87
Y [To = 13, 98
slide 1ayoUL.....cccvveee e 98
Slide Layout part......ccccceeecieeeeeciieeccieee e 113
Slide MASer «...coveieiieei e 13
Slide Master partccceeecveeeeeciiee e 115
Slide part.....ccoeeeeeei e 111
Slide Synchronization Data partccccceeunvneeeen. 116
Slide Synchronization Server Location................ 120

165

O 00 N o b W N P

e O s
0 N O L1 A W N KB O

Shared

SpreadsheetMLccceeeeecciiiiiieeeee e, 7,12 19 UNKNOWN PArtS..ccciiiiiiieeeeeeeecirriee e e e e e eeeinnnneeee e 17
SEYIE ettt 12 20 unknown relationshipsccccecveeeeriveeeenccieen e, 17
Style Definitions part.......cccceceeiiriieeeinciiee e, 51 21 User Defined Tags partcccoeeveeeevvieeeecnieee e, 117
SEYIES Pt e 89 D V] o [T o SRR 13
subdocumentccveeiiiiiiii e 24,55 23 VidEO Part .cccccceveeeiciiee et 157
supplementary document storage location.......... 24 24 View Properties part......ccccccveevvveveveeeeeeneneeeennennn 118
tabIE e 12,13, 14,60 25 WMLttt 15
Table Definition partccccceeeeeeeieceee e, 90 26 Volatile Dependencies partccceecveeeeecreeeeennnen. 91
Table Styles part.....ccoceeeccieee e 134 27 W3C.ooooeieee See World Wide Web Consortium
TEMPIAte e 24 28 Web Settings part.......cccccoeveeiciieecccieee e 52
LK s 11 29 WordprocessingML........ccceeeeecieeeeeciiee e, 7,11
ThEME e 14,132,133 30 WOTIKDOOK 12,60
Theme Override part......cccccceeeecveeeiccieee e 133 31 EXErNAl ..o 96
ThemMEe Part..cccccciee e 131 32 Workbook part......cccoeeiieiiieiicee e, 92
ThumMbBNEIl e 156 33 WOIKSNEOT .. 12,60
ErANSITION e 13 34 Worksheet part.....cccoceeiecieeiicciee e, 94
trash itemMs oo, 17 35 World Wide Web Consortiumcccccccveeeviiieeennnen. 9
Unicode standard........ccccoccveeivicieeiiicieee e 161 36 XSL transformationcccceevecieeiiiciee e 58

166

Office Open
XML

Ecma TC45
Final Draft

Part 2: Open Packaging Conventions

October 2006

10

11

12

13
14
15
16
17
18
19
20
21
22
23
24
25
26

27

28
29
30
31
32
33
34
35
36
37
38
39
40
41

Table of Contents

Table of Contents

0T = Vo T o vii
B T Y ol o 1= N 1
2. NOIrMAtive REFEIrENCES......cciiiuuiiiiiiiiiiiiiiiitrier it teraestesassestessssestenssssstesssssssensssssssnsssssesnsssssesnsssssanns 2
1 JR 0 71 411 4o T T 3
4. NoOtational CONVENTIONSccceeeueeiiiiiiiiiieimniiisiniiiiiresseiieiiiiresssiiiiimeesssseistirrrsssssssstmmersssssssssssann 6
4.1 DOCUMENT CONVENTIONS ...etiiiiiiiieiiiittte et e ettt e e e e s ettt et e e e e e ssatabeteeeeeessaansrteeeeeesssassbbaeaeeesssaasssaaaaaeeennn 6
A D I T-4 -1 0 o 1 o £ TP P P TP URPPPTPPPTO 6
5. Acronyms and Abbreviations.......cccciciiiiiiiiiiiiiiiiiiiiisiee st stesssessessssessensssessensssssesasssssanas 8
ST =Y T=T - 1 0 T=X o o1 o1 o TN 9
72 © 1Y =T V= 10
T o Tod Y= { 1Y, o o [SRRt 11
Tt R o [o (T PP U PPTP U PPPPPPPPRPOt 11
.11 Palt NGMIES .ttt an 11
8.1.2 CONTENT TYPOS ettt s 13
20 I T €1 o 1V o I 1o PPN 13
.14 XML USQEE ..ttt s 14

S - Vo Yo Lo [=TT oY - PSPPSR 14
S N =T Y A VTl Y=Y T = o ol PRSP 15
I A N - =40 011 01 €7 15

S T =1 - 1T o] o 1 PSP 15
S T8 A =T - [o 1 T ol - o PP 16
8.3.2 Package RelatioNSNipsSuuiii ittt e s e e et e e e e e te e e e ertaeeesanaaeeeaan 16
8.3.3 RelationNShip MarkUp ...cc..eveiiieeee et e et e e e e bt e e e e e bt e e e e ebtaeaesbtaeaeeantaeaeaans 16
8.3.4 Representing RelatioNSHiPS.......coi i iiiii ittt e et e e e e ebte e e e e bte e e e ebteeeeesntaeaeaans 19
8.3.5 Support for Versioning and EXtENSIDIlITY.......ccueiiiiiiiie it 21

L O o 1 (oF: | o Yol (V- N 22
9.1 Physical Mapping GUIAEIINES........uveiiiiiiiecciiee ettt e e s e e e st e e e e s b ae e e ssbeeeeesabeeeesnasees 22
18 0 A \V/ - ToToT=Te [@e Y4 Y o o] 1 T=T o} £ PPN 23

1S 00 R \V/ -1 o] oY [o T = @e T | 1= 1 o | A IV o =13 PO PP P TP TPPPP 23
9.1.3 Mapping Part Names to Physical Package ltem NamEs........ccuveiiiiiiiiiiiiiee et e 28

1o 200 I 1 oY (Y o [T 1 o V= SRR 30

B (V- o T o1 o Tk € = A | o ol o1V USRSt 31
9.2.1 MaAPPING Part DAtauueeeeeiiiiiiii e aan 32
9.2.2 ZIP IE@IM NAIMES «.eeeeeeeiieeeee ettt e e e e ettt e e e e e e e ettt e e e e e e s s aa bt e teeeee s e nnbeeeeeeeeeeaaansbebeeeeeeesanssneeeeeeeann 32
9.2.3 Mapping Part Names t0O ZIP [£€M NAMESuuuee s 32
9.2.4 Mapping ZIP Item Names tO Part NAmMES........uuu s 33
9.2.5 ZIP Package LIMiItations.......ccuuiiiiieie ettt e e e et ee e e e e e e e et e e e s e e e e e nannba e e e e e e e e eennraaeneaaaaean 33
9.2.6 MappPiNg Part CONTENT TYPE ..uuuueeeieiiiiii e naan 34
9.2.7 Mapping the GrowWth Hint........cooiiii e e e e e e et e e e e e e e e s nnraeeeeaeeean 34
9.2.8 Late Detection of ZIP Items Unfit for Streaming Consumptioncccecvvveeiiiiiiiicciiee e 34

N

o b~ w

10
11
12
13
14
15
16
17
18
19
20
21
22

23

24
25
26
27

28

29
30
31
32

33

34
35

36

37

38

39
40
41
42

Table of Contents

9.2.9 ZIP Format Clarifications fOr PACKagescuuiii ottt e e e e arre e e e e 35

10, COrE PrOPertieS. . ieuuiieeiiiuiiieiireiiiieiireetieeiteestrasisraestrasssrasssresssrsnsssessssrasssrsssssasssssnsssenssssassssasssssnsssanes 36
10.1 C0re Properties Part .. 37
10.2 Location Of COre Properties Part.......cicccciieeieciiieceiteeesetee e ssitee e sttt e e s siee e e s sbee e e s sbeeeessabeeaessseneessanseeassnns 39
10.3 Support for Versioning and EXteNSIDIlityccccuiiiieiiiiiiiiiec e 39
10.4 Schema Restrictions fOr COre Properties ... ceiii ittt e e s e e s sbee e e s sreeeeseans 39
0 T I 0 TU T4 < = |3 41
3 I R I o TWT 0] o T = T I - T £ ST UURTRTI 41
12, Digital SIBNAtUIES...ciiiiireeuiiiiiiiiiiireiiisiiiiiiiressesiseiiirressssssseiittreesssssssssssstmeesssssssssssssssessssssssssssssnessnnes 42
12.1 ChooSIiNG CONENT T0 SIZN weeiiiiiiiiiiciiee ettt e e et e e e et e e e e ebteeessbteeeeeastaeesenstaeeesnstaeeesastaeeesnns 42
12.2 Digital SIGNATUIE PArtsiiiiiiiiiee ettt e et e et e e e et e e e e s bte e e e ebteeeeebteeesaastaeeesstaeeesnstaeeesastaeaeanns 42
12.2.1 Digital Signature OFigin Part.......ccueiiiiiiie ettt e e e e e e tte e e e e arae e eeabaeesenreeesennseeeeennsens 43
12.2.2 Digital Signature XML Signature Part.........cc.eiiiiiiiie et tee e e tvee e e aree e e arae e s e nrae e s e nreas 43
12.2.3 Digital Signature CertifiCate Part........ccuei oottt bee e e e arae e s e nree e e e eares 44
12.2.4 Digital SigNature MarkUpcecccuieieeiiieee et e st e e s te e e e stae e e e e tbae e e earaeeeenstaeesensaeesennseneeennsens 44
12.3 Digital SigNature EXAMPIE. ... eiiee ettt et e et e e e e e bte e e e ett e e e s e bteeesestaeeseastaseeestaeeesastanaesnns 58
12.4 Generating SiBNAtUIES .cccc e 60
12.5 Validating SINATUIEScccuiiieiee ettt eee et et e et e s e e te e e s ate e s beeessteesnbeeensaeeanseeessseesnseeeseessnseeensenanns 61
12.5.1 Signature Validation and Streaming CoONSUMPLIONc.eevciiriiiiriciirerieesee e eree e see e eree e s e 62
12.6 Support for Versioning and EXteNSIDIlityccuviiiiiiiieiiiie e 62
12.6.1 UsSIiNg RelatioNShip TYPES couuiiiiiiiiiiieciiie et ertee sttt e e et e s e st e e e s bae e e s nsbeeeessreeeeenreeesennrens 62
12.6.2 Markup Compatibility Namespace for Package Digital Signatures........ccccocceevevcieeeiviciee e 62
Annex A. Resolving Unicode Strings to Part Names..........cceeeiiiiiiiimniiiiiiiinnnieiiiiinnnssseesssnnenssssssssnnne 64
A1 Creating an IRI from @ UNICOAE STHING ...evii ettt ettt tee e e e tte e e e etee e e e sabee e e eeabaee e eenbeeeeennnens 64
A2 Creating @ URITrOmM @n IRIooii ettt e e et e e e e et e e e e ata e e e eeabae e e eenbeeeeeeabeeeeennsens 64
A.3 Resolving a Relative Reference to a Part Nameccocuiiiiiiiie ettt e et e e e 65
A4 SEring CONVEISION EXAMPIES ...veiiiiiiiie ittt ciee sttt e e et e e e ete e e e s ete e e e s sabaee e saabaeeeesabaeeeesnseeeeesnseeeesnnsens 65
ANNEX B. PaCK URI ...cceieeuiiiiiiiiiiiiiieiiiiiiiiiineieeiiiisiinreseessssssstinsesssssssssssssnnesasssssssssssseesssssssssssssssssnnsssssssssanes 66
20 R - 1ol U 12 BTl o 1= o o TSP 66
B.2 ReSOIVING @ PACK URI 0 @ RESOUICE.....cccuviiiiieiieeecciteee ettt e e ettt e e e e ctte e e e etteeeeebteeeeestaeeeestseasaseseseenssanaesans 67
B.3 ComMPOSING @ PACK URIottt ettt e et e e e e bt e e e e ebte e e e ebteeeesasteeaeestasasessaeaesastanansnns 68
2 o TRV [T Yol TPt 69
Annex C. ZIP Appnote.txt ClarifiCations.......ccccceeiiiiiiiiiiieniiiiiiiiiiniisesssessesssssssenn 70
C.1 Archive File HEQder CONSISTENCY ...uviiiiiiieeeiiieeeciiiee e ettt e e e ette e e e etteeeestteeeesabeeeeenseeeeessaeesasssesesennseneesnnsens 70
LT =Y o L= =1V URPRt 70
Annex D.Schemas - XIMIL SChemMa.....ccuciiiiiiiiiiiiiiiiiiiiiieiiiiieiiiiseiiimmseiiesmsesiesmsstiesmsssssesssssssessssssssssssssssns 81
Annex E. SChemas - RELAX NGcc.uciiiiiiiiniimmuesiniiiiimemssmsiiisiiimesssissistimmesmmmssssisiimmmssssssssssssssessssssssssssssnns 82
Annex F. Standard Namespaces and CoNtent TYPEScerieeeiiiiimeiiriimmieriennsereennsersenssseseenssssssrnsssssssnsssssenns 83
Annex G.Physical Model Design Considerations...........cccciieiiieniiiiiiieeniiieiiiieiereniiieeiersnsessnsessnssssenssssnsessnsens 85
G0t R 1 Yol ol T 4V [T SRR 86
G.1.1 Direct ACCESS CONSUMPTION ... uuuuutitueiiiiuiiiitiiia s nasanans 86
G.1.2 Streaming CONSUMPTION. . .. et ittt aas 86

00 N O s~ W N R

10
11
12
13
14
15
16

17

18
19

Table of Contents

G.1.3 SEreaming CrEatiONueeeeeeeeieii s nanann 86
G.1.4 Simultaneous Creation and CONSUMPLION ...ccuviiiiiiiieiiiiiiee ettt e e e e saree e e s sareeeeeans 86

G I 1Yo YU}] 1Y L= PSP 86
G0 R 141 o LI @] o =T o T o V- PP PPTPRRN 86
G.2.2 INtErlEAVE OFUEIING .cciiiiiie ettt ettt e e s st e s ebee e e s s beeeessbteeessbtaeessstaeessanteeassnns 87

LG I @o Y0 0 o 10T g TToF= T oY o Y 42 [=T- SRR 87
G.3.1 SEQUENTIAI DEIIVEIY ceeeieiieee ettt et e e e e e et e e e e e bt e e e e e bteeesebteeeeestaeeesstaeeesnntaeaeaans 87
G.3.2 RANUOM ACCESS. . uteiitiiiiiteiieeestttestee ettt e stee sttt essteesbeeessbeesabeeesteesaseeesseeesssaesseesssseesnseeensseesseesnsseenns 87
Annex H.Conformance REQUIFEMENLS............ciiiieeieiiiieierienecerrenaesereennsseseennssessennsssseennssssesnsssssesnsssssesnssssnenns 88
[TR R o ol T =L 1V o o = PP 88

[1A o o Tor- |l o Tl = =T3PPSR 96

[ST A | o o VT Tor- | AV =T o o1 o - PSR 101

o I S O] {3 o o] o 1T o =L P PP PP PPTRRPPP 106

[T I o TW T 0]« - 1 SR 107

[I ST B 7= 01 = Y Fq o F= Y (UL =T RS 108

[TR A - 1ol U 1 SR 119
ANNEX L. BiblIOGIraphy ...cceee ittt e e st es s e enee s s e en s e s s ennssessennssessennssessennssessennssessennssanaennnnanns 121
N T 1= G R 13T =) 123

Foreword

Foreword

This multi-part Standard deals with Office Open XML Format-related technology, and consists of the following
parts:

e Part 1: "Fundamentals"

e Part 2: "Open Packaging Conventions" (this document)
e Part 3:"Primer"

e Part 4: "Markup Language Reference"

e Part 5: "Markup Compatibility and Extensibility"

This part, Part 2, includes a number of annexes that refer to data files provided in electronic form only.

Vi

O 00 N O

10
11

12
13
14

15
16
17

18

19
20

21

Scope

1. Scope

This Part (the Open Packaging Conventions specification) specifies a set of conventions that are used by Office
Open XML documents to define the structure and functionality of a package in terms of a package model and a
physical model.

The package model defines a package abstraction that holds a collection of parts. The parts are composed,
processed, and persisted according to a set of rules. Parts can have relationships to other parts or external
resources, and the package as a whole can have relationships to parts it contains or external resources. The
package model specifies how the parts of a package are named and related. Parts have content types and are
uniquely identified using the well-defined naming guidelines provided in this Open Packaging specification.

The physical mapping defines the mapping of the components of the package model to the features of a specific
physical format, namely a ZIP archive.

This Open Packaging Conventions specification also describes certain features that might be supported in a
package, including core properties for package metadata, a thumbnail for graphical representation of a package,
and digital signatures of package contents.

Because this Standard will continue to evolve, packages are designed to accommodate extensions and support

compatibility goals in a limited way. The versioning and extensibility mechanisms described in Part 5: "Markup

Compatibility and Extensibility" support compatibility between software systems based on different versions of
this Standard while allowing package creators to make use of new or proprietary features.

This Open Packaging Conventions specification specifies requirements for package implementers, producers,
and consumers.

In all subsequent uses, the term "this specification" shall refer to the content of this Part.

10

11

Normative References

2. Normative References

The following normative documents contain provisions, which, through reference in this text, constitute
provisions of this Open Packaging specification. For dated references, subsequent amendments to, or revisions
of, any of these publications do not apply. However, parties to agreements based on this Open Packaging
specification are encouraged to investigate the possibility of applying the most recent editions of the normative
documents indicated below. For undated references, the latest edition of the normative document referred to
applies. Members of ISO and IEC maintain registers of currently valid International Standards.

ISO 8601, Data elements and interchange formats — Information interchange — Representation of dates and
times.

ISO/IEC 9594-8 Public-key and attribute certificate frameworks (x.509 Certificate).

ISO/IEC 10646 (all parts), Information technology — Universal Multiple-Octet Coded Character Set (UCS).

10
11
12

13

14
15

16
17

18
19

20
21

22
23

24

25
26

27

28

Definitions

3. Definitions

For the purposes of this Open Packaging specification, the following definitions apply. Other terms are defined
where they appear in italic type. Terms explicitly defined in this Open Packaging specification are not to be
presumed to refer implicitly to similar terms defined elsewhere.

The terms base URI and relative reference are used in accordance with RFC 3986.

access style — The style in which local access or networked access is conducted. The access styles are as follows:
streaming creation, streaming consumption, simultaneous creation and consumption, and direct access
consumption.

behavior — External appearance or action.

behavior, implementation-defined — Unspecified behavior where each implementation shall document that
behavior, thereby promoting predictability and reproducibility within any given implementation. (This term is
sometimes called “application-specific behavior”.)

behavior, unspecified —Behavior where this Open Packaging specification imposes no requirements.

communication style — The style in which package contents are delivered by a producer or received by a
consumer. Communication styles include: random access and sequential delivery.

consumer — A piece of software or a device that reads packages through a package implementer. A consumer is
often designed to consume packages only for a specific physical package format.

content type — Describes the content stored in a part. Content types define a media type, a subtype, and an
optional set of parameters, as defined in RFC 2616.

Content Types stream — A specially-named stream that defines mappings from part names to content types.
The content types stream is not itself a part, and is not URI addressable.

device — A piece of hardware, such as a personal computer, printer, or scanner, that performs a single function
or set of functions.

format consumer — A consumer that consumes packages conforming to a format designer's specification.

format designer — The author of a particular file format specification built on this Open Packaging Conventions
specification.

format producer — A producer that produces packages conforming to a format designer's specification.

growth hint — A suggested number of bytes to reserve for a part to grow in-place.

10

11
12

13
14

15

16
17
18
19

20

21
22

23
24
25

26
27

28

29
30

31
32
33

Definitions

interleaved ordering — The layout style of a physical package where parts are broken into pieces and “mixed-
in” with pieces from other parts. When delivered, interleaved packages can help improve the performance of
the consumer processing the package.

layout style — The style in which the collection of parts in a physical package is laid out: either simple ordering
or interleaved ordering.

local access — The access architecture in which a pipe carries data directly from a producer to a consumer on a
single device.

logical item name — An abstraction that allows package implementers to manipulate physical data items
consistently regardless of whether those data items can be mapped to parts or not or whether the package is
laid out with simple ordering or interleaved ordering.

networked access — The access architecture in which a consumer and the producer communicate over a
protocol, such as across a process boundary, or between a server and a desktop computer.

pack URI — A URI scheme that allows URIs to be used as a uniform mechanism for addressing parts within a
package. Pack URIs are used as Base URIs for resolving relative references among parts in a package.

package — A logical entity that holds a collection of parts.

package implementer — Software that implements the physical input-output operations to a package according
to the requirements and recommendations of this Open Packaging specification. A package implementer is used
by a producer or consumer to interact with a physical package. A package implementer may be either a stand-
alone APl or may be an integrated component of a producer, consumer application, or device.

package model — A package abstraction that holds a collection of parts.

package relationship — A relationship whose target is a part and whose source is the package as a whole.
Package relationships are found in the package relationships part named “/_rels/.rels”.

part — A stream of bytes with a MIME content type and associated common properties. Typically corresponds
to a file [Example: on a file system end example], a stream [Example: in a compound file end example], or a
resource [Example: in an HTTP URI end example].

part name — The path component of a pack URI. Part names are used to refer to a part in the context of a
package, typically as part of a URI.

physical model — A description of the capabilities of a particular physical format.

physical package format — A specific file format, or other persistence or transport mechanism, that can
represent all of the capabilities of a package.

piece — A portion of a part. Pieces of different parts may be interleaved together. The individual pieces are
named using a unique mapping from the part name. Piece name grammar is not equivalent to the part name
grammar. Pieces are not addressable in the package model.

10
11

12
13
14

15
16

17
18

19

20
21

22
23

24

25
26

27

28
29

Definitions

pipe — A communication mechanism that carries data from the producer to the consumer.

producer — A piece of software or a device that writes packages through a package implementer. A producer is
often designed to produce packages according to a particular physical package format specification.

random access — A style of communication between the producer and the consumer of the package. Random
access allows the consumer to reference and obtain data from anywhere within a package.

relationship —The kind of connection between a source part and a target part in a package. Relationships make
the connections between parts directly discoverable without looking at the content in the parts, and without
altering the parts themselves. (See also Package Relationships.)

relationships part — A part containing an XML representation of relationships.

sequential delivery — A communication style in which all of the physical bits in the package are delivered in the
order they appear in the package.

signature policy — A format-defined policy that specifies what configuration of parts and relationships shall or
might be included in a signature for that format and what additional behaviors that producers and consumers of
that format shall follow when applying or verifying signatures following that format's signature policy.

simple ordering — A defined ordering for laying out the parts in a package in which all the bits comprising each
part are stored contiguously.

simultaneous creation and consumption — A style of access between a producer and a consumer in highly
pipelined environments where streaming creation and streaming consumption occur simultaneously.

stream — A linearly ordered sequence of bytes.

streaming consumption — An access style in which parts of a physical package may be processed by a consumer
before all of the bits of the package have been delivered through the pipe.

streaming creation — A production style in which a producer dynamically adds parts to a package after other
parts have been added without modifying those parts.

thumbnail — A small image that is a graphical representation of a part or the package as a whole.

well-known part — A part with a well-known relationship, which enables the part to be found without knowing
the location of other parts.

ZIP archive — A ZIP file as defined in the ZIP file format specification. A ZIP archive contains ZIP items.

ZIP item — A ZIP item is an atomic set of data in a ZIP archive that becomes a file when the archive is
uncompressed. When a user unzips a ZIP based package, the user sees an organized set of files and folders.

10
11
12
13
14

15

16
17

18

4.

4.1

Notational Conventions

Notational Conventions

Document Conventions

The following typographical conventions are used in this Standard:

1.

4.2

The first occurrence of a new term is written in italics. [Example: ... is considered normative. end
example]

A term defined as a basic definition is written in bold. [Example: behavior — External ... end example]
The name of an XML element is written using an Element style. [Example: The root element is
document. end example]

The name of an XML element attribute is written using an Attribute style. [Example: ... an id attribute.
end example)

An XML element attribute value is written using a constant-width style. [Example: ... value of
CommentReference. end example)

An XML element type name is written using a Type style. [Example: ... as values of the xsd:anyURI data
type. end example]

Diagram Notes

In some cases, markup semantics are described using diagrams. The diagrams place the parent element on the
left, with attributes and child elements to the right. The symbols are described below.

Symbol Description

|$| Required element: This box represents an element that shall appear

exactly once in markup when the parent element is included. The
“+” and “=” symbols on the right of these boxes have no semantic
meaning.

= Optional element: This box represents an element that shall appear
zero or one times in markup when the parent element is included.

E] Range indicator: These numbers indicate that the designated

7 @ element or choice of elements can appear in markup any number of
times within the range specified.

B attributes Attribute group: This box indicates that the enclosed boxes are each
I:I attributes of the parent element. Solid-border boxes are required
= attributes; dashed-border boxes are optional attributes.

Notational Conventions

Symbol Description
Eja Sequence symbol: The element boxes connected to this symbol
shall appear in markup in the illustrated sequence only, from top to
bottom.
= Choice symbol: Only one of the element boxes connected to this
symbol shall appear in markup.
CT_CP_Type Type indicator: The elements within the dashed box are of the

complex type indicated.

Acronyms and Abbreviations

5. Acronyms and Abbreviations

This clause is informative.

The following acronyms and abbreviations are used throughout this specification:
IEC — the International Electrotechnical Commission

ISO — the International Organization for Standardization

W3C — World Wide Web Consortium

End of informative text.

10
11
12

13

14

15

16

17

18

19

20

21

22

23

24

25

6.

General Description

General Description

This Open Packaging specification is intended for use by implementers, academics, and application
programmers. As such, it contains a considerable amount of explanatory material that, strictly speaking, is not

necessary in a formal specification.

This Open Packaging specification is divided into the following subdivisions:

P wnNPE

Front matter (clauses 1-7);
Overview (clause 8);

Main body (clauses 9-13);
Annexes

Examples are provided to illustrate possible forms of the constructions described. References are used to refer

to related clauses. Notes are provided to give advice or guidance to implementers or programmers. Annexes

provide additional information and summarize the information contained in this Open Packaging specification.

The following form the normative part of this Open Packaging specification:

Introduction

Clauses 1-4, 6, and 8-12
Annex A—Annex D
Annex F

The following form the informative part of this Open Packaging specification:

Clauses 5 and 7
Annex E

Annex G-Annex J
All notes

All examples

Whole clauses and annexes that are informative are identified as such. Informative text that is contained within

normative text is identified as either an example, or a note as specified in 4.1, “Document Conventions.”

10
11

12
13
14

15

16

Overview

7. Overview

This clause is informative.

This Open Packaging specification describes an abstract model and physical format conventions for the use of
XML, Unicode, ZIP, and other openly available technologies and specifications to organize the content and
resources of a document within a package. It is intended to support the content types and organization for
various applications and is written for developers who are building systems that process package content.

In addition, this Open Packaging specification defines common services that can be included in a package, such
as Core Properties and Digital Signatures.

A primary goal is to ensure the interoperability of independently created software and hardware systems that
produce or consume package content and use common services. This Open Packaging specification defines the
formal requirements that producers and consumers shall satisfy in order to achieve interoperability.

Various XML-based building blocks within a package make use of the conventions described in Part 5: “Markup
Compatibility and Extensibility” to facilitate future enhancement and extension of XML markup. That part shall
be explicitly cited by any markup specification that bases its versioning and extensibility strategy on Markup
Compatibility elements and attributes.

End of informative text.

10

10

11
12

13

14
15

16

17

18
19
20

Package Model

8. Package Model

A package is a logical entity that holds a collection of parts. The purpose of the package is to aggregate all of the
pieces of a document (or other type of content) into a single object. [Example: A package holding a document
with a picture might contain two parts: an XML markup part representing the document and another part
representing the picture. end example] The package is also capable of storing relationships between parts.

The package provides a convenient way to distribute documents with all of their component pieces, such as
images, fonts, and data. Although this Open Packaging specification defines a single-file package format, the
package model allows for the future definition of other physical package representations. [Example: A package
could be physically represented in a collection of loose files, in a database, or ephemerally in transit over a
network connection. end example]

This Open Packaging specification also defines a URI scheme, the pack URI, that allows URIs to be used as a
uniform mechanism for addressing parts within a package.

8.1 Parts

A part is a stream of bytes with the properties listed in Table 8-1. A stream is a linearly ordered sequence of
bytes. Parts are analogous to a file in a file system or to a resource on an HTTP server.

Table 8-1. Part properties

Name Description Required/Optional

Name The name of the part Required. The package
implementer shall require a
part name. [M1.1]

Content The type of content stored in the part Required. The package

Type implementer shall require a
content type and the format
designer shall specify the
content type. [M1.2]

Growth Hint | A suggested number of bytes to reserve for Optional. The package

the part to grow in-place implementer might allow a
growth hint to be provided by
a producer. [01.1]

8.1.1 Part Names

Each part has a name. Part names refer to parts within a package. [Example: The part name
“/hello/world/doc.xml” contains three segments: “hello”, “world”, and “doc.xml”. The first two segments in the
sample represent levels in the logical hierarchy and serve to organize the parts of the package, whereas the

11

10

11

12

13

14

15

16
17

18

19
20
21
22

23

24

25

26
27

28

29

30

Package Model
third contains actual content. Note that segments are not explicitly represented as folders in the package model,
and no directory of folders exists in the package model. end example]

Part Name Syntax
The part name grammar is defined as follows:

part_name
segment

1*("/" segment)
1*(pchar)

pchar is defined in RFC 3986.

The part name grammar implies the following constraints. The package implementer shall neither create any
part that violates these constraints nor retrieve any data from a package as a part if the purported part name
violates these constraints.

e A part name shall not be empty. [M1.1]

e A part name shall not have empty segments. [M1.3]

e A part name shall start with a forward slash (“/”) character. [M1.4]

e A part name shall not have a forward slash as the last character. [M1.5]

e A segment shall not hold any characters other than pchar characters. [M1.6]

Part segments have the following additional constraints. The package implementer shall neither create any part
with a part name comprised of a segment that violates these constraints nor retrieve any data from a package as
a part if the purported part name contains a segment that violates these constraints.

e Asegment shall not contain percent-encoded forward slash (“/”), or backward slash (“\”) characters.
(M1.7]

o A segment shall not contain percent-encoded unreserved characters. [M1.8]

o A segment shall not end with a dot (“.”) character. [M1.9]

e Asegment shall include at least one non-dot character. [M1.10]

[Example:
Example 8-1. A part name

/a/%D1%86.xml
/xml/iteml.xml

Example 8-2. An invalid part name
//xml/.

end example]

12

10

11
12
13
14
15

16

17

18

19
20

21
22
23
24

25
26

27

28

29

30
31
32
33

Package Model

8.1.1.1 Part Naming

A package implementer shall neither create nor recognize a part with a part name derived from another part
name by appending segments to it. [M1.11] [Example: If a package contains a part named
“/segmentl/segment2/.../segmentn”, then other parts in that package shall not have names such as:
“/segmentl”, “segmentl/segment2”, or “/segmentl/segment2/.../segmentn-1". end example]

8.1.1.2 Part Name Equivalence

Part name equivalence is determined by comparing part names as case-insensitive ASCII strings. Packages shall
not contain equivalent part names and package implementers shall neither create nor recognize packages with
equivalent part names. [M1.12]

8.1.2 Content Types

Every part has a content type, which identifies the type of content that is stored in the part. Content types
define a media type, a subtype, and an optional set of parameters. Package implementers shall only create and
only recognize parts with a content type; format designers shall specify a content type for each part included in
the format. Content types for package parts shall fit the definition and syntax for media types as specified in RFC
2616, §3.7. [M1.13] This definition is as follows:

media-type = type "/" subtype *(";" parameter)
where parameter is expressed as
attribute "=" value

The type, subtype, and parameter attribute names are case-insensitive. Parameter values may be case-sensitive,
depending on the semantics of the parameter attribute name.

Content types shall not use linear white space either between the type and subtype or between an attribute and
its value. Content types also shall not have leading or trailing white spaces. Package implementers shall create
only such content types and shall require such content types when retrieving a part from a package; format
designers shall specify only such content types for inclusion in the format. [M1.14]

The package implementer shall require a content type that does not include comments and the format designer
shall specify such a content type. [M1.15]

Format designers might restrict the usage of parameters for content types. [01.2]

Content types for package-specific parts are defined in Annex F, “Standard Namespaces and Content Types.”

8.1.3 Growth Hint

Sometimes a part is modified after it is placed in a package. Depending on the nature of the modification, the
part might need to grow. For some physical package formats, this could be an expensive operation and could
damage an otherwise efficiently interleaved package. Ideally, the part should be allowed to grow in-place,
moving as few bytes as possible.

13

w N

w

10

11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32

33

34
35
36

Package Model

To support these scenarios, a package implementer can associate a growth hint with a part. [01.1] The growth
hint identifies the number of bytes by which the producer predicts that the part will grow. In a mapping to a
particular physical format, this information might be used to reserve space to allow the part to grow in-place.
This number serves as a hint only. The package implementer might ignore the growth hint or adhere only loosely
to it when specifying the physical mapping. [01.3] If the package implementer specifies a growth hint, it is set
when a part is created and the package implementer shall not change the growth hint after the part has been
created. [M1.16]

8.1.4 XML Usage

All XML content of the parts defined in this Open Packaging specification shall conform to the following
validation rules:

1. XML content shall be encoded using either UTF-8 or UTF-16. If any part includes an encoding
declaration, as defined in §4.3.3 of the XML 1.0 specification, that declaration shall not name any
encoding other than UTF-8 or UTF-16. Package implementers shall enforce this requirement upon
creation and retrieval of the XML content. [M1.17]

2. The XML 1.0 specification allows for the usage of Document Type Definitions (DTDs), which enable
Denial of Service attacks, typically through the use of an internal entity expansion technique. As
mitigation for this potential threat, DTD declarations shall not be used in the XML markup defined in this
Open Packaging specification. Package implementers shall enforce this requirement upon creation and
retrieval of the XML content and shall treat the presence of DTD declarations as an error. [M1.18]

3. If the XML content contains the Markup Compatibility namespace, as described in Part 5: “Markup
Compatibility and Extensibility”, it shall be processed by the package implementer to remove Markup
Compatibility elements and attributes, ignorable namespace declarations, and ignored elements and
attributes before applying subsequent validation rules. [M1.19]

4. XML content shall be valid against the corresponding XSD schema defined in this Open Packaging
specification. In particular, the XML content shall not contain elements or attributes drawn from
namespaces that are not explicitly defined in the corresponding XSD unless the XSD allows elements or
attributes drawn from any namespace to be present in particular locations in the XML markup. Package
implementers shall enforce this requirement upon creation and retrieval of the XML content. [M1.20]

5. XML content shall not contain elements or attributes drawn from “xml” or “xsi” namespaces unless they
are explicitly defined in the XSD schema or by other means described in this Open Packaging
specification. Package implementers shall enforce this requirement upon creation and retrieval of the
XML content. [M1.21]

8.2 Part Addressing

Parts often contain references to other parts. [Example: A package might contain two parts: an XML markup file
and an image. The markup file holds a reference to the image so that when the markup file is processed, the
associated image can be identified and located. end example.]

14

10
11

12
13
14

15

16

17

18

19

20

21
22

23

24

25

26

27
28

29

30
31
32

Package Model

8.2.1 Relative References
A relative reference is expressed so that the address of the referenced part is determined relative to the part

containing the reference.

Relative references from a part are interpreted relative to the base URI of that part. By default, the base URI of a
part is derived from the name of the part, as defined in §B.3.

If the format designer permits it, parts can contain Unicode strings representing references to other parts. If
allowed by the format designer, format producers can create such parts and format consumers shall consume
them. [01.4] In particular, XML markup might contain Unicode strings referencing other parts as values of the
xsd:anyURI data type. Format consumers shall convert these Unicode strings to URIs, as defined in Annex A,
“Resolving Unicode Strings to Part Names,” before resolving them relative to the base URI of the part containing
the Unicode string. [M1.23]

Some types of content provide a way to override the default base URI by specifying a different base in the
content. [Example: XML Base or HTML end example]. In the presence of one of these overrides, format
consumers shall use the specified base URI instead of the default. [M1.24]

[Example:
Example 8-3. Part names and relative references
A package includes parts with the following names:

e /markup/page.xml
e /images/picture.jpg
e /images/other_picture.jpg

If /markup/page.xml contains a reference to ../images/picture.jpg, then this reference is interpreted as referring
to the part name /images/picture.jpg.

end example)

8.2.2 Fragments
Sometimes it is useful to address a portion of or a specific point in a part. In URIs, a fragment identifier is used

for this purpose. (See RFC 3986.)

[Example: In an XML part a fragment identifier might identify a portion of the XML content using an XPath
expression. end example]

8.3 Relationships

Parts often contain references to other parts in the package and to resources outside of the package. In general,
these references are represented inside the referring part in ways that are specific to the content type of the
part, that is, in arbitrary markup or an application-specific encoding. This effectively hides the internal and

15

10
11

12

13
14
15
16

17

18

19
20
21

22

23
24

25

26
27
28

29
30
31

32
33
34
35

Package Model

external links between parts from consumers that do not understand the content types of the parts containing
such references.

The package introduces a higher-level mechanism to describe references from parts to other internal or external
resources: relationships. Relationships represent the type of connection between a source part and a target
resource. They make the connection directly discoverable without looking at the part contents, so they are
independent of content-specific schemas and quick to resolve.

Relationships provide a second important function: relating parts without modifying their content. Sometimes
relationships act as a label where the content type of the labeled part does not define a way to attach the given
information. Some scenarios require information to be attached to an existing part without modifying that part,
either because the part is encrypted and cannot be decrypted, or because it is digitally signed and changing it
would invalidate the signature.

8.3.1 Relationships Part

Each set of relationships sharing a common source is represented by XML stored in a Relationships part. The
Relationships part is URI-addressable and it can be opened, read, and deleted. The Relationships part shall not
have relationships to any other part. Package implementers shall enforce this requirement upon the attempt to
create such a relationship and shall treat any such relationship as invalid. [M1.25]

The content type of the Relationships part is defined in Annex F, “Standard Namespaces and Content Types".

8.3.2 Package Relationships

A relationship whose source is a package as a whole is known as a package relationship. Package relationships
are used to identify the “starting” parts in a package for a given context. This method avoids relying on naming
conventions for finding parts in a package.

8.3.3 Relationship Markup

Relationships are represented using Relationship elements nested in a single Relationships element. These
elements are defined in the Relationships namespace, as specified in Annex F, “Standard Namespaces and
Content Types". The schema for relationships is described in Annex D, "Schemas - XML Schema".

The package implementer shall require that every Relationship element has an Id attribute, the value of which
is unique within the Relationships part, and that the Id type is xsd:ID, the value of which conforms to the naming
restrictions for xsd:ID as described in the W3C Recommendation “XML Schema Part 2: Datatypes.” [M1.26]

The nature of a Relationship element is identified by the Type attribute. Relationship Type is defined in the
same way that namespaces are defined for XML namespaces. By using types patterned after the Internet
domain-name space, non-coordinating parties can safely create non-conflicting relationship types.

Relationship types can be compared to determine whether two Relationship elements are of the same type.
This comparison is conducted in the same way as when comparing URIs that identify XML namespaces: the two
URIs are treated as strings and considered identical if and only if the strings have the same sequence of
characters. The comparison is case-sensitive and no escaping is done or undone.

16

Package Model

The Target attribute of the Relationship element holds a URI that points to a target resource. Where the URl is
expressed as a relative reference, it is resolved against the base URI of the Relationships source part. The
xml:base attribute shall not be used to specify a base URI for relationship XML content.

8.3.3.1 Relationships Element

The structure of a Relationships element is shown in the following diagram:

diagram T T _|
CT_Relationships

annotation | The root element of the Relationships part.

8.3.3.2 Relationship Element

The structure of a Relationship element is shown in the following diagram:

diagram T
& | CT Rel.mon*:.m

| El atteibutes |

=Relationship

-

attributes | |Name Type Use Default Fixed Annotation
TargetMode ST_TargetMode |optional The package implementer might allow

a TargetMode to be provided by a
producer. [01.5]

The TargetMode indicates whether
or not the target describes a resource
inside the package or outside the
package. The valid values are
“Internal” and “External”.

The default value is Internal. When
set to Internal, the Target attribute
shall be a relative reference and that

17

Target

Type

xsd:anyURI

xsd:anyURI

xsd:ID

required

required

required

Package Model

reference is interpreted relative to
the “parent” part. For package
relationships, the package
implementer shall resolve relative
references in the Target attribute
against the pack URI that identifies
the entire package resource. [M1.29]
For more information, see Annex B,
“Pack URL.”

When set to External, the Target
attribute may be a relative reference
or a URL. If the Target attribute is a
relative reference, then that
reference is interpreted relative to
the location of the package.

The package implementer shall
require the Target attribute to be a
URI reference pointing to a target
resource. The URI reference shall be a
URI or a relative reference. [M1.28]

Target attribute values are
dependent on the TargetMode
attribute value.

The package implementer shall
require the Type attribute to be a URI
that defines the role of the
relationship and the format designer
shall specify such a Type. [M1.27]

The package implementer shall
require a valid XML identifier. [M1.26]
The Id type is xsd:ID and it shall
conform to the naming restrictions
for xsd:ID as specified in the W3C
Recommendation “XML Schema Part
2: Datatypes.” The value of the Id

18

10
11
12
13

14
15
16

17

18

19
20
21

Package Model

attribute shall be unique within the
Relationships part.

annotation | Represents a single relationship.

A format designer might allow fragment identifiers in the value of the Target attribute of the Relationship
element. [01.6] If a fragment identifier is allowed in the Target attribute of the Relationship element, a
package implementer shall not resolve the URI to a scope less than an entire part. [M1.32]

8.3.4 Representing Relationships

Relationships are represented in XML in a Relationships part. Each part in the package that is the source of one
or more relationships can have an associated Relationships part. This part holds the list of relationships for the
source part. For more information on the Relationships namespace and relationship types, see Annex F,
“Standard Namespaces and Content Types.”

A special naming convention is used for the Relationships part. First, the Relationships part for a part in a given
folder in the name hierarchy is stored in a sub-folder called “_rels”. Second, the name of the Relationships part
is formed by appending “.rels” to the name of the original part. Package relationships are found in the package
relationships part named “/_rels/.rels”.

The package implementer shall name relationship parts according to the special relationships part naming
convention and require that parts with names that conform to this naming convention have the content type for
a Relationships part. [M1.30]

[Example:
Example 8-4. Sample relationships and associated markup

The figure below shows a Digital Signature Origin part and a Digital Signature XML Signature part. The Digital
Signature Origin part is targeted by a package relationship. The connection from the Digital Signature Origin to
the Digital Signature XML Signature part is represented by a relationship.

19

O 00 N O

11
12
13

14

15

16

17
18
19
20

21
22

Package Model

Package Relationships Part PACKAGE
/_rels/.rels

v

Digital Signature
Origin Part
forigin

Relationships Part
[_rels/origin.rels

l

Digital Signature
XML Signature
Part
fsignature1.xml

The relationship targeting the Digital Signature Origin part is stored in /_rels/.rels and the relationship for the
Digital Signature XML Signature part is stored in /_rels/origin.rels.

The Relationships part associated with the Digital Signature Origin contains a relationship that connects the
Digital Signature Origin part to the Digital Signature XML Signature part. This relationship is expressed as follows:

<Relationships
xmlns="http://schemas.openxmlformats.org/package/2006/relationships”>
<Relationship
Target="./Signature.xml"
Id="A5FFC797514BC"
Type="http://schemas.openxmlformats.org/package/2006/relationships/
digital-signature/signature"/>
</Relationships>

end example]
[Example:
Example 8-5. Targeting resources

Relationships can target resources outside of the package at an absolute location and resources located relative
to the current location of the package. The following Relationships part specifies relationships that connect a
part to picl.jpg at an external absolute location, and to my_house.jpg at an external location relative to the
location of the package:

<Relationships
xmlns="http://schemas.openxmlformats.org/package/2006/relationships™

20

O 00 N OO s~ W N e

=
= O

Jany
N

13

14

15
16

17
18
19
20
21
22
23
24
25
26
27
28

29

30

31
32
33

34
35
36
37

Package Model

<Relationship
TargetMode="External™
Id="A9EF(C627517BC"
Target="http://www.custom.com/images/picl.jpg"
Type="http://www.custom.com/external-resource”/>
<Relationship
TargetMode="External™
Id="A5EFC797514BC"
Target="./images/my_house.jpg"
Type="http://www.custom.com/external-resource"/>
</Relationships>

end example]
[Example:
Example 8—6. Re-using attribute values

The following Relationships part contains two relationships, each using unique Id values. The relationships share
the same Target, but have different relationship types.

<Relationships
xmlns="http://schemas.openxmlformats.org/package/2006/relationships">
<Relationship
Target="./Signature.xml”
Id="A5FFC797514BC"
Type="http://schemas.openxmlformats.org/package/2006/
relationships/digital-signature/signature”/>
<Relationship
Target="./Signature.xml"
Id="B5F32797CC4B7"
Type="http://www.custom.com/internal-resource”/>
</Relationships>

end example]

8.3.5 Support for Versioning and Extensibility

Producers might generate relationship markup that uses the versioning and extensibility mechanisms defined in
Part 5: “Markup Compatibility and Extensibility” to incorporate elements and attributes drawn from other XML
namespaces. [01.7]

Consumers shall process relationship markup in a manner that conforms to Part 5: “Markup Compatibility and
Extensibility”. Producers editing relationships based on this version of the relationship markup specification shall
not preserve any ignored content, regardless of the presence of any preservation attributes as defined in Part 5:
“Markup Compatibility and Extensibility”. [M1.31]

21

10
11
12
13

14
15

16
17
18
19
20

21

22
23
24

25
26
27
28
29
30

31
32
33

Physical Package

9. Physical Package

In contrast to the package model that describes the contents of a package in an abstract way, the physical
package refers to a package that is stored in a particular physical file format. This includes the physical model
and physical mapping considerations.

The physical model abstractly describes the capabilities of a particular physical format and how producers and
consumers can use a package implementer to interact with that physical package format. The physical model
includes the access style, or the manner in which package input-output is conducted, as well as the
communication style, which describes the method of interaction between producers and consumers across a
communications pipe. The physical model also includes the layout style, or how part contents are physically
stored within the package. The layout style can either be simple ordering, where the parts are arranged
contiguously as atomic blocks of data, or interleaved ordering, where the parts are broken into individual pieces
and the pieces are stored as interleaved blocks of data in an optimized fashion. The performance of a physical
package design is reliant upon the physical model capabilities.

[Note: See Annex G, “Physical Model Design Considerations” for additional discussion of the physical model. end
note]

Physical mappings describe the manner in which the package contents are mapped to the features of that
specific physical format. Details of how package components are mapped are described, as well as common
mapping patterns and mechanisms for storing part content types. This Open Packaging specification describes
both the specific considerations for physical mapping to a ZIP archive as well as generic physical mapping
considerations applicable to any physical package format.

9.1 Physical Mapping Guidelines

Whereas the package model defines a package abstraction, an instance of a package must be based on a
physical representation. A physical package format is a particular physical representation of the package
contents in a file.

Many physical package formats have features that partially match the packaging model components. In defining
mappings from the package model to a physical package format, it is advisable to take advantage of any
similarities in capabilities between the package model and the physical package medium while using layers of
mapping to provide additional capabilities not inherently present in the physical package medium. [Example:
Some physical package formats store parts as individual files in a file system, in which case it is advantageous to
map many part names directly to identical physical file names. end example]

Designers of physical package formats face some common mapping problems. [Example: Associating arbitrary
content types with parts and supporting part interleaving end example] Package implementers might use the
common mapping solutions defined in this Open Packaging specification. [02.3]

22

Physical Package

9.1.1 Mapped Components

The package implementer shall define a physical package format with a mapping for the required components
package, part name, part content type and part contents. [M2.2] [Note: Not all physical package formats support
the part growth hint. end note]

Table 9—1. Mapped components

Name Description Required/Optional

Package URI-addressable resource that identifies package Required. The package implementer shall
as a whole unit provide a physical mapping for the
package. [M2.2]

Part name Names a part Required. The package implementer shall
provide a physical mapping for each
part’s name. [M2.2]

Part content Identifies the kind of content stored in the part Required. The package implementer shall

type provide a physical mapping for each

part’s content type. [M2.2]

Required. The package implementer shall
provide a physical mapping for each
part’s contents. [M2.2]

Part contents Stores the actual content of the part

Part growth Number of additional bytes to reserve for possible | Optional. The package implementer
hint growth of part might provide a physical mapping for a
growth hint that might be specified by a
producer. [02.2]

9.1.2 Mapping Content Types

Methods for mapping part content types to a physical format are described below.

9.1.2.1 Identifying the Part Content Type

The package implementer shall define a format mapping with a mechanism for associating content types with

10

11
12
13

14
15
16
17

parts. [M2.3]

Some physical package formats have a native mechanism for representing content types. [Example: the content

type header in MIME end example] For such packages, the package implementer should use the native

mechanism to map the content type for a part. [S2.1]

For all other physical package formats, the package implementer should include a specially-named XML stream

in the package called the Content Types stream. [S2.2] The Content Types stream shall not be mapped to a part

by the package implementer. [M2.1] This stream is therefore not URI-addressable. However, it can be

interleaved in the physical package using the same mechanisms used for interleaving parts.

23

10

11

12

13

14
15

16

17

18
19
20
21

22

23

24

25

Physical Package

9.1.2.2 Content Types Stream Markup

The Content Types stream identifies the content type for each package part. The Content Types stream contains
XML with a top-level Types element, and one or more Default and Override child elements. Default elements
define default mappings from the extensions of part names to content types. Override elements are used to
specify content types on parts that are not covered by, or are not consistent with, the default mappings.
Package producers can use pre-defined Default elements to reduce the number of Override elements on a part,
but are not required to do so. [02.4]

The package implementer shall require that the Content Types stream contain one of the following for every
part in the package:

e One matching Default element

e One matching Override element

e Both a matching Default element and a matching Override element, in which case the Override
element takes precedence. [M2.4]

The package implementer shall require that there not be more than one Default element for any given
extension, and there not be more than one Override element for any given part name. [M2.5]

The order of Default and Override elements in the Content Types stream is not significant.
If the package is intended for streaming consumption:

e The package implementer should not allow Default elements; as a consequence, there should be one
Override element for each part in the package.

e The format producer should write the Override elements to the package so they appear before the
parts to which they correspond, or in close proximity to the part to which they correspond.

[S2.3]
The package implementer can define Default content type mappings even though no parts use them. [02.5]

9.1.2.2.1 Types Element

The structure of a Types element is shown in the following diagram:

diagram I_FT_WE - T 1
| |

e 17

e et lﬂuerritle
I Do

Default H

annotation 'The root element of the Content Types stream.

24

Physical Package

9.1.2.2.2 Default Element

The structure of a Default element is shown in the following diagram:

[CT_Default |

diagram

| E asttriputes

Default Extension

ContemtType

I

attributes | Name Type Use Default |Fixed Annotation

Extension ST_Extension required A part name extension. A Default
element matches any part whose
name ends with a period followed by
the value of this attribute. The
package implementer shall require a
non-empty extension in a Default
element. [M2.6]

ContentType |ST_ContentType required A content type as defined in RFC 2616.
Indicates the content type of any
matching parts (unless overridden).
The package implementer shall
require a content type in a Default
element and the format designer shall
specify the content type. [M2.6]

annotation pefines default mappings from the extensions of part names to content types.

9.1.2.2.3 Override Element

The structure of an Override element is shown in the following diagram:

diagram
g [CT_Owerride

| & attriputes

|
||
ContemtType]

Owerride

PartHame

T

25

O 0 N o Uu b

11
12

attributes | Name Type

Use

ContentType |ST_ContentType required

PartName xs:anyURI required

Physical Package

Default |Fixed /Annotation

A content type as defined in RFC 2616.
Indicates the content type of the
matching part. The package
implementer shall require a content
type and the format designer shall
specify the content type in an
Override element. [M2.7]

A part name. An Override element
matches the part whose name is equal
to the value of this attribute. The
package implementer shall require a
part name. [M2.7]

annotation | specifies content types on parts that are not covered by, or are not consistent with,

the default mappings.

9.1.2.2.4 Content Types Stream Markup Example

[Example:

Example 9-7. Content Types stream markup

<Types

xmlns="http://schemas.openxmlformats.org/package/2006/content-types">
<Default Extension="txt" ContentType="text/plain" />

<Default Extension="jpeg" ContentType="image/jpeg" />

<Default Extension="picture" ContentType="image/gif" />

<Override PartName="/a/b/sample4.picture" ContentType="image/jpeg" />

</Types>

The following is a sample list of parts and their corresponding content types as defined by the Content Types

stream markup above.

Part name Content type
/a/b/samplel.txt text/plain
/a/b/sample2.jpg image/jpeg
/a/b/sample3.picture | image/gif
/a/b/sampled.picture | image/jpeg

26

10
11
12
13
14
15

16
17

18

19
20

21

23
24
25
26
27

28
29
30
31

32
33
34
35

Physical Package

end example]

9.1.2.3

Setting the Content Type of a Part

When adding a new part to a package, the package implementer shall ensure that a content type for that part is

specified in the Content Types stream; the package implementer shall perform the following steps to do so

[M2.8]:

1.

9.1.2.4

Get the extension from the part name by taking the substring to the right of the rightmost occurrence of
the dot character (.) from the rightmost segment.

If a part name has no extension, a corresponding Override element shall be added to the Content Types
stream.

Compare the resulting extension with the values specified for the Extension attributes of the Default
elements in the Content Types stream. The comparison shall be case-insensitive ASCII.

If there is a Default element with a matching Extension attribute, then the content type of the new part
shall be compared with the value of the ContentType attribute. The comparison might be case-sensitive
and include every character regardless of the role it plays in the content-type grammar of RFC 2616, or it
might follow the grammar of RFC 2616.

a. If the content types match, no further action is required.
b. If the content types do not match, a new Override element shall be added to the Content Types
stream. .

If there is no Default element with a matching Extension attribute, a new Default element or Override
element shall be added to the Content Types stream.

Getting the Content Type of a Part

To get the content type of a part, the package implementer shall perform the following steps [M2.9]:

1.

Compare the part name with the values specified for the PartName attribute of the Override elements.
The comparison shall be case-insensitive ASCII.

If there is an Override element with a matching PartName attribute, return the value of its
ContentType attribute. No further action is required.

If there is no Override element with a matching PartName attribute, then

a. Get the extension from the part name by taking the substring to the right of the rightmost
occurrence of the dot character (.) from the rightmost segment.

b. Check the Default elements of the Content Types stream, comparing the extension with the
value of the Extension attribute. The comparison shall be case-insensitive ASCII.

If there is a Default element with a matching Extension attribute, return the value of its ContentType
attribute. No further action is required.

If neither Override nor Default elements with matching attributes are found for the specified part
name, the implementation shall not map this part name to a part.

27

10

11
12

13

14

15

16

18
19
20
21
22
23

Physical Package

9.1.2.5 Support for Versioning and Extensibility

The package implementer shall not use the versioning and extensibility mechanisms defined in Part 5: “Markup
Compatibility and Extensibility” to incorporate elements and attributes drawn from other XML-namespaces into
the Content Types stream markup. [M2.10]

9.1.3 Mapping Part Names to Physical Package Item Names

The mapping of part names to the names of items in the physical package uses an intermediate logical item
name abstraction. This logical item name abstraction allows package implementers to manipulate physical data
items consistently regardless of whether those data items can be mapped to parts or not or whether the
package is laid out with simple ordering or interleaved ordering. See §9.1.4 for interleaving details.

[Example:

Figure 9—1 illustrates the relationship between part names, logical item names, and physical package item
names.

Figure 9—1. Part names and logical item names

Part names Logical item Physical package
[Public, case-insensitive) names item names
Moo xaml - - Soo.xaml ~ - Physical item name
! bar.xaml Sfbar.xaml/[0]. piece - - Physical item name
fbar.xaml/[1]. piece - - Physical item name
‘\\ . fbar.xaml/[2].Piece -+ - Physical item name
A fBar.xaml/[3]. plece - - Physical item name
b {bar. XAML/[4].last. piece |« - Physical item name
!/ [Content Types].xmil £t = Physical item name
end example]
9.1.3.1 Logical [tem Names

Logical item names have the following syntax:

LogicalItemName = PrefixName [SuffixName]

PrefixName = *AChar
AChar = %x20-7E
SuffixName = "/" "[" PieceNumber "]" [".last"] ".piece"

PieceNumber "@" | NonZeroDigit [1*Digit]
Digit = "@" | NonZeroDigit

28

10
11
12

13

14

15
16

17
18

19

20
21

22

23
24

25
26
27

28
29
30
31

Physical Package

NonZeroDigit = "1" | "2" | "3" | "4 | 5" | "e" | "7" | "8" | "o
[Note: Piece numbers identify the individual pieces of an interleaved part. end note]
The package implementer shall compare prefix names as case-insensitive ASCII strings. [M2.12]
The package implementer shall compare suffix names as case-insensitive ASCII strings. [M2.13]

Logical item names are considered equivalent if their prefix names and suffix names are equivalent. The package
implementer shall not allow packages that contain equivalent logical item names. [M2.14] The package
implementer shall not allow packages that contain logical items with equivalent prefix names and with equal
piece numbers, where piece numbers are treated as integer decimal values. [M2.15]

Logical item names that use suffix names form a complete sequence if and only if:

1. The prefix names of all logical item names in the sequence are equivalent, and
The suffix names of the sequence start with “/[0].piece” and end with “/[n].last.piece” and include a
piece for every piece number between 0 and n, without gaps, when the piece numbers are interpreted
as decimal integer values.

9.1.3.2 Mapping Part Names to Logical [tem Names

Non-interleaved part names are mapped to logical item names that have an equivalent prefix name and no
suffix name.

Interleaved part names are mapped to the complete sequence of logical item names with an equivalent prefix

name.
9.1.3.3 Mapping Logical Item Names and Physical Package Item Names

The mapping of logical item names and physical package item names is specific to the particular physical
package.

9.1.3.4 Mapping Logical Item Names to Part Names

A logical item name without a suffix name is mapped to a part name with an equivalent prefix name provided
that the prefix name conforms to the part name syntax.

A complete sequence of logical item names is mapped to the part name that is equal to the prefix name of the
logical item name having the suffix name “/[0].piece”, provided that the prefix name conforms to the part name
syntax.

The package implementer might allow a package that contains logical item names and complete sequences of
logical item names that cannot be mapped to a part name because the logical item name does not follow the
part naming grammar or the logical item does not have an associated content type. [02.7] The package
implementer shall not map logical items to parts if the logical item names violate the part naming rules. [M2.16]

29

10

11
12

13
14
15

16
17

18
19

20

21

22

23
24
25
26
27
28

29

30
31

32

Physical Package

The package implementer shall consider naming collisions within the set of part names mapped from logical
item names to be an error. [M2.17]

9.1.4 Interleaving

Not all physical packages natively support interleaving of the data streams of parts. The package implementer
should use the mechanism described in this Open Packaging specification to allow interleaving when mapping to
the physical package for layout scenarios that support streaming consumption. [S2.4]

The interleaving mechanism breaks the data stream of a part into pieces, which can be interleaved with pieces
of other parts or with whole parts. Pieces are named using a unique mapping from the part name, defined in
§9.1.3. This enables a consumer to join the pieces together in their original order, forming the data stream of
the part.

The individual pieces of an interleaved part exist only in the physical package and are not addressable in the
packaging model. A piece might be empty.

An individual part shall be stored either in an interleaved or non-interleaved fashion. The package implementer
shall not mix interleaving and non-interleaving for an individual part. [M2.11] The format designer specifies
whether that format might use interleaving. [02.1]

The grammar for deriving piece names from a given part name is defined by the logical item name grammar as
defined in §9.1.3.1. A suffix name is mandatory.

The package implementer should store pieces in their natural order for optimal efficiency. [S2.5] The package
implementer might create a physical package containing interleaved parts and non-interleaved parts. [02.6]

[Example:
Example 9-8. ZIP archive contents
A ZIP archive might contain the following item names mapped to part pieces and whole parts:

spine.xml/[0@].piece
pages/page0d.xml
spine.xml/[1].piece
pages/pagel.xml
spine.xml/[2].last.piece
pages/page2.xml

end example]

Under certain scenarios, interleaved ordering can provide important performance benefits, as demonstrated in
the following example.

[Example:

30

O 00 N O

10

11
12

13

14

15

16

17
18

19
20
21
22

Physical Package

Example 9-9. Performance benefits with interleaved ordering

The figure below contains two parts: a page part (markup/page.xml) describing the contents of a page, and an
image part (images/picture.jpg) referring to an image that appears on the page.

markup‘page . xmi

L]

images/pitiine jpsg

With simple ordering, all of the bytes of the page part are delivered before the bytes of the image part. The
figure below illustrates this scenario. The consumer is unable to display the image until it has received all of the
page part and the image part. In some circumstances, such as small packages on a high-speed network, this may
be acceptable. In others, having to read through all of markup/page.xml to get to the image results in
unacceptable performance or places unreasonable memory demands on the consumer’s system.

byte O
markupl/page.xmi
Y imagesipichirg [pag
Byta n

With interleaved ordering, performance is improved by splitting the page part into pieces and inserting the
image part immediately following the reference to the image. This allows the consumer to begin processing the
image as soon as it encounters the reference.

byte 0 markupfpage xmi
part-1
imagasigiciine{pag
Y markup/page.xml
byte n part 2
end example]

9.2 Mapping to a ZIP Archive

This Open Packaging specification defines a mapping for the ZIP archive format. Future versions of this Open
Packaging specification might provide additional mappings.

A ZIP archive is a ZIP file as defined in the ZIP file format specification excluding all elements of that specification
related to encryption, decryption, or digital signatures. A ZIP archive contains ZIP items. [Note: ZIP items become
files when the archive is unzipped. When users unzip a ZIP-based package, they see a set of files and folders that
reflects the parts in the package and their hierarchical naming structure. end note]

31

O 00 N O

10
11
12

13

14
15
16

17

18
19

20
21
22
23

Physical Package

Table 9-2, Package model components and their physical representations, shows the various components of the
package model and their corresponding physical representation in a ZIP archive.

Table 9—-2. Package model components and their physical representations

Package model Physical representation
component
Package ZIP archive file
Part ZIP item
Part name Stored in item header (and ZIP central directory as appropriate).

See §9.2.3 for conversion rules.

Part content type ZIP item containing XML that identifies the content types for each part
according to the pattern described in §9.1.2.1.

Growth hint Padding reserved in the ZIP Extra field in the local header that precedes
the item. See §9.2.7 for a detailed description of the data structure.

9.2.1 Mapping Part Data

In a ZIP archive, the data associated with a part is represented as one or more items.

A package implementer shall store a non-interleaved part as a single ZIP item. [M3.1] When interleaved, a
package implementer shall represent a part as one or more pieces, using the method described in §9.1.4.
[M2.18] Pieces are named using the specified pattern, making it possible to rebuild the entire part from its
constituent pieces. Each piece is stored within a ZIP archive as a single ZIP item.

In the ZIP archive, the chunk of bits that represents an item is stored contiguously. A package implementer
might intentionally order the sequence of ZIP items in the archive to enable an efficient organization of the part
data in order to achieve correct and optimal interleaving. [03.1]

9.2.2 ZIP Item Names

ZIP item names are case-sensitive ASCII strings. Package implementers shall create ZIP item names that conform
to ZIP archive file name grammar. [M3.2] Package implementers shall create item names that are unique within
a given archive. [M3.3]

9.2.3 Mapping Part Names to ZIP Item Names

To map part names to ZIP item names the package implementer shall perform, in order, the following steps
[M3.4]:

1. Convert the part name to a logical item name or, in the case of interleaved parts, to a complete
sequence of logical item names.

2. Remove the leading forward slash (/) from the logical item name or, in the case of interleaved parts,
from each of the logical item names within the complete sequence.

32

10
11

12
13
14

15
16
17

18
19

20

21

22
23
24
25
26
27

Physical Package

The package implementer shall not map a logical item name or complete sequence of logical item names sharing
a common prefix to a part name if the logical item prefix has no corresponding content type. [M3.5]

9.2.4 Mapping ZIP Item Names to Part Names

To map ZIP item names to part names, the package implementer shall perform, in order, the following steps
[M3.6]:

1. Map the ZIP item names to logical item names by adding a forward slash (/) to each of the ZIP item
names.
2. Map the obtained logical item names to part names. For more information, see §9.1.3.4.

9.2.5 ZIP Package Limitations

The package implementer shall map all ZIP items to parts except MS-DOSZIP items, as defined in the ZIP
specification, that are not MS-DOS files. [M3.7]

[Note: The ZIP specification specifies that ZIP items recognized as MS-DOS files are those with a “version made
by” field and an “external file attributes” field in the “file header” record in the central directory that have a
value of 0. end note]

In ZIP archives, the package implementer shall not exceed 65,535 bytes for the combined length of the item
name, Extra field, and Comment fields. [M3.8] Accordingly, part names stored in ZIP archives are limited to
65,535 characters, subtracting the size of the Extra and Comment fields.

Package implementers should restrict part naming to accommodate file system limitations when naming parts
to be stored as ZIP items. [S3.1]

[Example:

Examples of these limitations are:

“xn o".n

e On Windows file systems, the asterisk (“*”) and colon (“:”) are not valid, so parts named with this
character will not unzip successfully.

e On Windows file systems, many programs can handle only file names that are less than 256 characters
including the full path; parts with longer names might not behave properly once unzipped.

e On Unix file systems, the semicolon (“;”) has a special meaning, so parts with this character might not be
processed as expected.

end example]

ZIP-based packages shall not include encryption as described in the ZIP specification. Package implementers
shall enforce this restriction. [M3.9]

33

10
11

12

13
14
15
16

17
18

19

20

21
22

23
24

Physical Package

9.2.6 Mapping Part Content Type

Part content types are used for associating content types with part data within a package. In ZIP archives,
content type information is stored using the common mapping pattern that stores this information in a single
XML stream as follows:

e Package implementers shall store content type data in an item(s) mapped to the logical item name with
the prefix_name equal to “/[Content_Types].xml” or in the interleaved case to the complete sequence
of logical item names with that prefix_name. [M3.10]

Package implementers shall not map logical item name(s) mapped to the Content Types stream in a ZIP archive
to a part name. [M3.11] [Note: Bracket characters "[" and "]" were chosen for the Content Types stream name
specifically because these characters violate the part naming grammar, thus reinforcing this requirement. end

note]

9.2.7 Mapping the Growth Hint

In a ZIP archive, the growth hint is used to reserve additional bytes that can be used to allow an item to grow in-
place. The padding is stored in the Extra field, as defined in the ZIP file format specification. If a growth hint is
used for an interleaved part, the package implementer should store the Extra field containing the growth hint
padding with the item that represents the first piece of the part. [S3.2]

The format of the ZIP item's Extra field, when used for growth hints, is shown in Table 9-3, Structure of the Extra
field for growth hints below.

Table 9-3. Structure of the Extra field for growth hints

Field Size Value

Header ID 2 bytes A220

Length of Extra field 2 bytes The signature length (2 bytes) + the padding initial
value length (2 bytes) + Length of the padding
(variable)

Signature (for 2 bytes A028

verification)

Padding Initial Value 2 bytes Hex number value is set by the producer when the
item is created

<padding> [Padding Should be filled with NULL characters

Length]
9.2.8 Late Detection of ZIP Items Unfit for Streaming Consumption

Several substantial conditions that represent a package unfit for streaming consumption may be detected mid-
processing by a streaming package implementer. These include:

e Aduplicate ZIP item name is detected the moment the second ZIP item with that name is encountered.
Duplicate ZIP item names are not allowed. [M3.3]

34

10
11

12

13
14

Physical Package

e Ininterleaved packages, an incomplete sequence of ZIP items is detected when the last ZIP item is
received. Because one of the interleaved pieces is missing, the entire sequence of ZIP items cannot be
mapped to a part and is therefore invalid. [M2.16]

e Aninconsistency between the local ZIP item headers and the ZIP central directory file headers is
detected at the end of package consumption, when the central directory is processed.

e AZIP item that is not a file, according to the file attributes in the ZIP central directory, is detected at the
end of package consumption, when the central directory is processed. Only a ZIP item that is a file shall
be mapped to a part in a valid package.

When any of these conditions are detected, the streaming package implementer shall generate an error,
regardless of any processing that has already taken place. Package implementers shall not generate a package
containing any of these conditions when generating a package intended for streaming consumption. [M3.13]

9.2.9 ZIP Format Clarifications for Packages

The ZIP format includes a number of features that packages do not support. Some ZIP features are clarified in
the package context. See Annex C, “ZIP Appnote.txt Clarifications,” for package-specific ZIP information.

35

Core Properties

10. Core Properties

Core properties enable users to get and set well-known and common sets of property metadata within
packages. The core properties and the Standard that describes them are shown in Table 10-1, “Core
properties”. The namespace for the properties in this table in the Open Packaging Conventions domain are
defined in Annex F, “Standard Namespaces and Content Types.”

Core property elements are non-repeatable. They may be empty or omitted. The Core Properties Part may be
omitted if no core properties are present.

Table 10-1. Core properties

Property Domain Description
category Open A categorization of the content of this package.
Packaging
Conventions [Example: Example values for this property might include:
Resume, Letter, Financial Forecast, Proposal, Technical
Presentation, and so on. This value might be used by an
application's user interface to facilitate navigation of a large
set of documents. end example]
contentStatus | Open The status of the content. [Example: Values might include
Packaging “Draft”, “Reviewed”, and “Final”. end example]
Conventions
contentType Open The type of content represented, generally defined by a
Packaging specific use and intended audience. [Example: Values might
Conventions include “Whitepaper”, “Security Bulletin”, and “Exam”. end
example]
[Note: This property is distinct from MIME content types as
defined in RFC 2616. end note]
created Dublin Core Date of creation of the resource.
creator Dublin Core An entity primarily responsible for making the content of
the resource.
description Dublin Core An explanation of the content of the resource. [Example:
Values might include an abstract, table of contents,
reference to a graphical representation of content, and a
free-text account of the content. end example]
identifier Dublin Core An unambiguous reference to the resource within a given
context.

36

Property Domain Description
keywords Open A delimited set of keywords to support searching and
Packaging indexing. This is typically a list of terms that are not
Conventions available elsewhere in the properties.
language Dublin Core The language of the intellectual content of the resource.
[Note: IETF RFC 3066 provides guidance on encoding to
represent languages. end note]
lastModifiedBy | Open The user who performed the last modification. The
Packaging identification is environment-specific. [Example: A name,

Conventions

email address, or employee ID. end example] It is
recommended that this value be as concise as possible.

lastPrinted Open The date and time of the last printing.
Packaging
Conventions

modified Dublin Core Date on which the resource was changed.

revision Open The revision number. [Example: This value might indicate
Packaging the number of saves or revisions, provided the application
Conventions updates it after each revision. end example]

subject Dublin Core The topic of the content of the resource.

title Dublin Core The name given to the resource.

version Open The version number. This value is set by the user or by the
Packaging application.
Conventions

10.1 Core Properties Part

Core Properties

Core properties are stored in XML in the Core Properties part. The Core Properties part content type is defined

in Annex F, “Standard Namespaces and Content Types.”

The structure of the CoreProperties element is shown in the following diagram:

37

© 0 N o U b

11
12
13
14
15

Core Properties

diagram A
CT_coreProperties |

| category | |

[1
ri keywords

coreProperties Ej(—Eia—jEH Lesrrrsn . 3

i delanguage
i

i lastModifiedBy

| LT R

annotation | Producers might provide all or a subset of these metadata properties to describe the contents of a
package.

[Example:
Example 10-1. Core properties markup
An example of a core properties part is illustrated by this example:

<coreProperties
xmlns="http://schemas.openxmlformats.org/package/2006/metadata/
core-properties”
xmlns:dcterms="http://purl.org/dc/terms/"
xmlns:dc="http://purl.org/dc/elements/1.1/"
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance">
<dc:creator>Alan Shen</dc:creator>
<dcterms:created xsi:type="dcterms:W3CDTF">
2005-06-12
</dcterms:created>
<contentType>Functional Specification</contentType>
<dc:title>OPC Core Properties</dc:title>

38

O 00 N OO s~ W N e

=
o

11

12
13
14
15
16

17

18
19
20
21
22
23
24

25

26
27

28
29
30
31
32
33
34
35
36

Core Properties

<dc:subject>Spec defines the schema for OPC Core Properties and their
location within the package</dc:subject>

<dc:language>eng</dc:language>
<version>1.0</version>
<lastModifiedBy>Alan Shen</lastModifiedBy>
<dcterms:modified xsi:type="dcterms:W3CDTF">2005-11-23</dcterms:modified>
<contentStatus>Reviewed</contentStatus>
<category>Specification</category>

</coreProperties>

end example]

10.2 Location of Core Properties Part

The location of the Core Properties part within the package is determined by traversing a well-defined package
relationship as listed in Annex F, “Standard Namespaces and Content Types”. The format designer shall specify
and the format producer shall create at most one core properties relationship for a package. A format consumer
shall consider more than one core properties relationship for a package to be an error. If present, the
relationship shall target the Core Properties part. [M4.1]

10.3 Support for Versioning and Extensibility

The format designer shall not specify and the format producer shall not create Core Properties that use the
Markup Compatibility namespace as defined in Annex F, “Standard Namespaces and Content Types”. A format
consumer shall consider the use of the Markup Compatibility namespace to be an error. [M4.2] Instead,
versioning and extensibility functionality is accomplished by creating a new part and using a relationship with a
new type to point from the Core Properties part to the new part. This Open Packaging specification does not
provide any requirements or guidelines for new parts or relationship types that are used to extend core
properties.

10.4 Schema Restrictions for Core Properties

The following restrictions apply to every XML document instance that contains Open Packaging Conventions
core properties:

1. Producers shall not create a document element that contains refinements to the Dublin Core elements,
except for the two specified in the schema: <dcterms:created> and <dcterms:modified> Consumers shall
consider a document element that violates this constraint to be an error. [M4.3]

2. Producers shall not create a document element that contains the xml:lang attribute. Consumers shall
consider a document element that violates this constraint to be an error. [M4.4] For Dublin Core
elements, this restriction is enforced by applications.

3. Producers shall not create a document element that contains the xsi:type attribute, except for a
<dcterms:created> or <dcterms:modified> element where the xsi:type attribute shall be present and
shall hold the value dcterms:W3CDTF, where dcterms is the namespace prefix of the Dublin Core

39

Core Properties

namespace. Consumers shall consider a document element that violates this constraint to be an error.
[M4.5]

40

Thumbnails

11. Thumbnails

The format designer might allow images, called thumbnails, to be used to help end-users identify parts of a
package or a package as a whole. These images can be generated by the producer and stored as parts. [05.1]

11.1 Thumbnail Parts

The format designer shall specify thumbnail parts that are identified by either a part relationship or a package
relationship. The producer shall build the package accordingly. [M5.1] For information about the relationship
type for Thumbnail parts, see Annex F, “Standard Namespaces and Content Types.”

41

10
11
12

13

14
15
16

17
18
19
20
21
22

23

24

25
26
27

28

29
30
31

32

Digital Signatures

12. Digital Signatures

Format designers might allow a package to include digital signatures to enable consumers to validate the
integrity of the contents. The producer might include the digital signature when allowed by the format designer.
[06.1] Consumers can identify the parts of a package that have been signed and the process for validating the
signatures. Digital signatures do not protect data from being changed. However, consumers can detect whether
signed data has been altered and notify the end-user, restrict the display of altered content, or take other
actions.

Producers incorporate digital signatures using a specified configuration of parts and relationships. This clause
describes how the package digital signature framework applies the W3C Recommendation “XML-Signature
Syntax and Processing” (referred to here as the “XML Digital Signature specification”). In addition to complying
with the XML Digital Signature specification, producers and consumers also apply the modifications specified
in§12.2.4.1.

12.1 Choosing Content to Sign

Any part or relationship in a package can be signed, including Digital Signature XML Signature parts themselves.
An entire Relationships part or a subset of relationships can be signed. By signing a subset, other relationships
can be added, removed, or modified without invalidating the signature.

Because applications use the package format to store various types of content, application designers that
include digital signatures should define signature policies that are meaningful to their users. A signature policy
specifies which portions of a package should not change in order for the content to be considered intact. To
ensure validity, some clients require that all of the parts and relationships in a package be signed. Others require
that selected parts or relationships be signed and validated to indicate that the content has not changed. The
digital signature infrastructure in packages provides flexibility in defining the content to be signed, while
allowing parts of the package to remain changeable.

12.2 Digital Signature Parts

The digital signature parts consist of the Digital Signature Origin part, Digital Signature XML Signature parts, and
Digital Signature Certificate parts. Relationship names and content types relating to the use of digital signatures
in packages are defined in Annex F, “Standard Namespaces and Content Types.”

[Example:

Figure 12—1 shows a signed package with signature parts, signed parts, and an X.509 certificate. The example
Digital Signature Origin part references two Digital Signature XML Signature parts, each containing a signature.
The signatures relate to the signed parts.

Figure 12-1. A signed package

42

10
11
12

13
14

15

16

17
18
19
20

Digital Signatures

s "y

Fe Bibaship Felation b

Digital Signature Chgital Signature
XML Signature ¥l Signature -
Part Part -‘_\UH Signed Part
4O
LiFl e \ 1\
i Signed Fart Rl
Fie lation zh | \\ \ Signed Part
UFI
Signed Part

M vy
end example]

12.2.1 Digital Signature Origin Part

The Digital Signature Origin part is the starting point for navigating through the signatures in a package. The
package implementer shall include only one Digital Signature Origin part in a package and it shall be targeted
from the package root using the well-defined relationship type specified in Annex F, “Standard Namespaces and
Content Types”. [M6.1] When creating the first Digital Signature XML Signature part, the package implementer
shall create the Digital Signature Origin part, if it does not exist, in order to specify a relationship to that Digital
Signature XML Signature part. [M6.2] If there are no Digital Signature XML Signature parts in the package, the
Digital Signature Origin part is optional. [06.2] Relationships to the Digital Signature XML Signature parts are
defined in the Relationships part. The producer should not create any content in the Digital Signature Origin part
itself. [S6.1]

The producer shall create Digital Signature XML Signature parts that have a relationship from the Digital
Signature Origin part and the consumer shall use that relationship to locate signature information within the
package. [M6.3]

12.2.2 Digital Signature XML Signature Part

Digital Signature XML Signature parts are targeted from the Digital Signature Origin part by a relationship that
uses the well-defined relationship type specified in Annex F, “Standard Namespaces and Content Types”. The
Digital Signature XML Signature part contains digital signature markup. The producer might create zero or more
Digital Signature XML Signature parts in a package. [06.4]

43

10
11
12
13
14
15
16
17

18

19
20

21

22

23
24
25
26
27
28
29
30
31
32
33

Digital Signatures

12.2.3 Digital Signature Certificate Part

If present, the Digital Signature Certificate part contains an X.509 certificate for validating the signature.
Alternatively, the producer might store the certificate as a separate part in the package, might embed it within
the Digital Signature XML Signature part itself, or might not include it in the package if certificate data is known
or can be obtained from a local or remote certificate store. [06.5]

The package digital signature infrastructure supports X.509 certificate technology for signer authentication.

If the certificate is represented as a separate part within the package, the producer shall target that certificate
from the appropriate Digital Signature XML Signature part by a Digital Signature Certificate relationship as
specified in Annex F, “Standard Namespaces and Content Types” and the consumer shall use that relationship to
locate the certificate. [M6.4] The producer might sign the part holding the certificate. [06.6] The content types
of the Digital Signature Certificate part and the relationship targeting it from the Digital Signature XML Signature
part are defined in Annex F, “Standard Namespaces and Content Types”, Producers might share Digital Signature
Certificate parts by using the same certificate to create more than one signature. [06.7] Producers generating
digital signatures should not create Digital Signature Certificate parts that are not the target of at least one
Digital Signature Certificate relationship from a Digital Signature XML Signature part. In addition, producers
should remove a Digital Signature Certificate part if removing the last Digital Signature XML Signature part that
has a Digital Signature Certificate relationship to it. [S6.2]

12.2.4 Digital Signature Markup

The markup described here includes a subset of elements and attributes from the XML Digital Signature
specification and some package-specific markup. For a complete example of a digital signature, see §12.3.

12.2.4.1 Modifications to the XML Digital Signature Specification

The package modifications to the XML Digital Signature specification are summarized as follows:

1. The producer shall create Reference elements within a SignedInfo element that reference elements
within the same Signature element. The consumer shall consider Reference elements within a
SignedInfo element that reference any resources outside the same Signature element to be in error.
[M6.5] The producer should only create Reference elements within a Signedinfo element that reference
an Object element. [S6.5] The producer shall not create a reference to a package-specific Object
element that contains a transform other than a canonicalization transform. The consumer shall consider
a reference to a package-specific Object element that contains a transform other than a canonical
transform to be an error. [M6.6]

2. The producer shall create one and only one package-specific Object element in the Signature element.
The consumer shall consider zero or more than one package-specific Object element in the Signature
element to be an error. [M6.7]

The producer shall create package-specific Object elements that contain exactly one Manifest element and
exactly one SignatureProperties element. [Note: This SignatureProperties element can contain multiple
SignatureProperty elements. end note] The consumer shall consider package-specific Object elements that

44

2

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28

29
30
31

32

33

Digital Signatures

contain other types of elements to be an error. [M6.8] [Note: A signature may contain other Object elements
that are not package-specific. end note]

a. The producer shall create Reference elements within a Manifest element that reference with
their URI attribute only parts within the package. The consumer shall consider Reference
elements within a Manifest element that reference resources outside the package to be an
error. [M6.9] The producer shall create relative references to the local parts that have query
components that specifies the part content type as described in §12.2.4.6. The relative
reference excluding the query component shall conform to the part name grammar. The
consumer shall consider a relative reference to a local part that has a query component that
incorrectly specifies the part content type to be an error. [M6.10] The producer shall create
Reference elements with a query component that specifies the content type that matches the
content type of the referenced part. The consumer shall consider signature validation to fail if
the part content type compared in a case-sensitive manner to the content type specified in the
query component of the part reference does not match. [M6.11]

b. The producer shall not create Reference elements within a Manifest element that contain
transforms other than the canonicalization transform and relationships transform. The
consumer shall consider Reference elements within a Manifest element that contain transforms
other than the canonicalization transform and relationships transform to be in error. [M6.12]

c. A producer that uses an optional relationships transform shall follow it by a canonicalization
transform. The consumer shall consider any relationships transform that is not followed by a
canonicalization transform to be an error. [M6.13]

d. The producer shall create exactly one SignatureProperty element with the Id attribute value
set to idSignatureTime. The Target attribute value of this element shall be either empty or
contain a fragment reference to the value of the Id attribute of the root Signature element. A
SignatureProperty element shall contain exactly one SignatureTime child element. The
consumer shall consider a SignatureProperty element that does not contain a SignatureTime
element or whose Target attribute value is not empty or does not contain a fragment reference
the Id attribute of the ancestor Signature element to be in error. [M6.14].

[Note: All modifications to XML Digital Signature markup occur in locations where the XML Signature schema
allows any namespace. Therefore, package digital signature XML is valid against the XML Signature schema. end
note]

12.2.4.2 Signature Element

The structure of a Signature element is shown in the following diagram:

45

Digital Signatures

diagram

E atriputes

Signature Signedinfo

namespace http://www.w3.org/2000/09/xmldsig#

attributes ||Name [Type |Use Default [Fixed Annotation
Id xs:ID joptional A unique identifier of the signature xml
document.

annotation | The root element of the signature xml document stored in a signature part. The producer shall
create a Signature element that contains exactly one local-data, package-specific Object element
and zero or more application-specific Object elements. If a Signature element violates this
constraint, a consumer shall consider this to be an error. [M6.15]

12.2.4.3 SignedInfo Element

The structure of a SignedInfo element is shown in the following diagram:

diagram

CanonicalizationMethod

-

Signedinfo |$|-|:—--— ESignmunel'-.-'I\etIn:r{I =

t"]

,I-'-‘.eference E%]

1.
namespace http://www.w3.0rg/2000/09/xmldsig#

annotation | specifies the data in the package that is signed. Holds one or more references to Object elements
within the same Digital Signature XML Signature part. The producer shall create a SignedInfo
element that contains exactly one reference to the package-specific Object element. The consumer
shall consider it an error if a SignedInfo element does not contain a reference to the package-
specific Object element. [M6.16]

46

10

11
12

13
14

15

16

17
18

19

20

Digital Signatures

12.2.4.4 CanonicalizationMethod Element

The structure of a CanonicalizationMethod element is shown in the following diagram:

diagram

E sttriputes

FCanmlicalizationl'-.-'lethotl ['l} .
Algorithm

namespace http://www.w3.0rg/2000/09/xmldsig#
attributes | Name Type Use Default |Fixed |Annotation

Algorithm xs:anyURI required Contains a URI that identifies the particular
canonicalization algorithm.

annotation | specifies the canonicalization algorithm applied to the SignedInfo element prior to performing
signature calculations.

Since XML allows equivalent content to be represented differently, a producer should apply a canonicalization
transform to the SignedInfo element when it generates it, and a consumer should apply the canonicalization
transform to the SignedInfo element when validating it. [S6.3]

[Note: Performing a canonicalization transform ensures that SignedInfo content can be validated even if the
content has been regenerated using, for example, different entity structures, attribute ordering, or character
encoding.

Producers and consumers should also use canonicalization transforms for references to parts that hold XML
documents. These transforms are defined using the Transformelement. end note]

The following canonicalization methods shall be supported by producers and consumers of packages with digital
signatures:

e XML Canonicalization (c14n)
e XML Canonicalization with Comments (c14n with comments)

Consumers validating signed packages shall fail the validation if other canonicalization methods are
encountered. [M6.34]

12.2.4.5 SignatureMethod Element

The structure of a SignatureMethod element is shown in the following diagram:

47

Digital Signatures

diagram E= attriputes

IESignatureMetIm{I |$|-

namespace http://www.w3.org/2000/09/xmldsig#
attributes | Name Type Use Default |Fixed |Annotation

Algorithm xs:anyURI required Contains a URI that identifies the particular
algorithm for the signature method.

annotation | pefines the algorithm that is used to convert the SignedInfo element into a hashed value
contained in the SignatureValueelement. Producers shall support DSA and RSA algorithms to
produce signatures. Consumers shall support DSA and RSA algorithms to validate signatures.
[M6.17]

12.2.4.6 Reference Element

The structure of a Reference element is shown in the following diagram:

diagram B attrivutes

URI

1
*_ Transforms

Reference

namespace http://www.w3.0rg/2000/09/xmldsig#
attributes ||Name |Type Use Default Fixed Annotation

URI xs:anyURI required Within a <SignedInfo> element, this attribute
contains a URI that identifies an element within the
signature xml document.

Within a <Manifest> element, this attribute contains
a relative reference composed of a reference to a

part that conforms to the part name grammar and a
query component that identifies the content type of

48

10

11

12

13

14
15

16

17

18

19

Digital Signatures

that part.

annotation | specifies the object being signed, a digest algorithm, a digest value, and a list of transforms to be
applied prior to digesting.

12.2.4.6.1 Usage of <Reference> Element as <Manifest> Child Element

The producer shall create a Reference element within a Manifest element with a URI attribute and that
attribute shall contain a part name, without a fragment identifier. The consumer shall consider a Reference
element with a URI attribute that does not contain a part name to be an error. [M6.18]

References to package parts include the part content type as a query component. The syntax of the relative
reference is as follows:

/pagel.xml?ContentType="value"
where value is the content type of the targeted part.
[Note: See §12.2.4.1 for additional requirements on Reference elements. end note]
[Example:
Example 12-2. Part reference with query component
In the following example, the content type is “application/vnd.ms-package.relationships+xml”.

URI="/ rels/document.xml.rels?ContentType=application/vnd.ms-
package.relationships+xml"

end example]

12.2.4.7 Transforms Element

The structure of a Transforms element is shown in the following diagram:

dlagram | Transforms E}(—H—._EE-IT“"STO[“]

1.0

namespace http://www.w3.0rg/2000/09/xmldsig#

annotation | contains an ordered list of Transform elements that describe how the producer digested the
Object data before signing it.

49

10

11

12

Digital Signatures

The following transforms shall be supported by producers and consumers of packages with digital signatures:

e XML Canonicalization (c14n)
e XML Canonicalization with Comments (c14n with comments)
e Relationships transform (package-specific)

Consumers validating signed packages shall fail the validation if other transforms are encountered. Relationships
transforms shall only be supported by producers and consumers when the Transform element is a descendant
element of a Manifest element [M6.19]

12.2.4.8 Transform Element

The structure of a Transform element is shown in the following diagram:

diagram B attriputes

JEETEN _RelationshipReference
13 Ed
: =
S ’RelationshipsﬁroupReference

namespace http://www.w3.0rg/2000/09/xmldsig#

Transform |-

attributes | Name Type Use Default [Fixed |Annotation

Algorithm xs:anyURI required Contains a URI that identifies the particular
transformation algorithm.

annotation | pescribes how the signer obtained the Object data that was digested.

12.2.4.9 DigestMethod Element

The structure of a DigestMethod element is shown in the following diagram:

diagram & attriputes

E[lligestl'-.-'letln:rtl 1|-

namespace http://www.w3.0rg/2000/09/xmldsig#

attributes | |Name Type Use Default [Fixed Annotation

50

Digital Signatures

Algorithm xs:anyURI required Contains a URI that identifies the particular
digest method.

annotation | pefines the algorithm that yields the DigestValue from the object data after transforms are
applied. Package producers and consumers shall support RSA-SHA1 algorithms to produce or
validate signatures. [M6.17]

12.2.4.10 DigestValue Element

The structure of a DigestValue element is shown in the following diagram:

dlagram E[Iigesﬂ!alue

namespace http://www.w3.org/2000/09/xmldsig#

annotation | contains the encoded value of the digest in base64.

12.2.4.11 SignatureValue Element

The structure of a SignatureValue element is shown in the following diagram:

diagram [attributes

IESignatureUalue [TI}; R

namespace http://www.w3.0rg/2000/09/xmldsig#
attributes | Name Type Use Default |Fixed |Annotation
Id xs:ID joptional Contains a URI that identifies the

SignatureValueelement within the signature xml
document.

annotation | contains the actual value of the digital signature in base64.

12.2.4.12 Object Element

The Object element can be either package-specific or application-specific.

51

10

11

12
13
14
15
16
17

18

19

Digital Signatures

12.2.4.13 Package-Specific Object Element

The structure of a Object element is shown in the following diagram:

diagram & attriputes

,Manifest =

,Signmurerpenies

namespace http://www.w3.org/2000/09/xmldsig#
attributes | Name Type |Use Default Fixed Annotation

Id xs:ID Shall have value of "idPackageObject".

annotation | |Holds the Manifest and SignatureProperties elements that are package-specific.

[Note: Although the diagram above shows use of the Id attribute as optional, as does the XML Digital Signature
schema, for package-specific Object elements, the Id attribute shall be specified and have the value of
“idPackageObject”. This is a package-specific restriction over and above the XML Digital Signature schema. end
note]

The producer shall create each Signature element with exactly one package-specific Object. For a signed
package, consumers shall treat the absence of a package-specific Object, or the presence of multiple package-
specific Object elements, as an invalid signature. [M6.15]

12.2.4.14 Application-Specific Object Element

The application-specific Object element specifies application-specific information. The format designer might
permit one or more application-specific Object elements. If allowed by the format designer, format producers
can create one or more application-specific Object elements. [06.8] Producers shall create application-specific
Object elements that contain XML-compliant data; consumers shall treat data that is not XML-compliant as an
error. [M6.20] Format designers and producers might not apply package-specific restrictions regarding URIs and
Transform elements to application-specific Object element. [06.9]

12.2.4.15 KeyInfo Element

The structure of a KeyInfo element is shown in the following diagram:

52

Digital Signatures

diagram IEH'&}.I"M'D [ll]{-m-jﬂi_ﬂaxsoﬂnata
1.m

namespace http://www.w3.0rg/2000/09/xmldsig#

annotation | Enables recipients to obtain the key needed to validate the signature. Can contain keys, names,
certificates, and other public key management information. Producers and consumers shall use the
certificate embedded in the Digital Signature XML Signature part when it is specified. [M6.21]

12.2.4.16 X509Data Element

The structure of an X509Data element is shown in the following diagram:

diagram | X509Data I:Il]{—-u—l:_l-lf}{ﬁﬂﬁi:eniﬁcate |
1..00

namespace http://www.w3.org/2000/09/xmldsig#

annotation | \contains one or more identifiers of X509 certificates.

12.2.4.17 X509Certificate Element

The structure of an X509Certificate element is shown in the following diagram:

diagram = X509Certificate

namespace http://www.w3.0rg/2000/09/xmldsig#

annotation | contains a base64-encoded X509 certificate.

12.2.4.18 Manifest Element

The structure of a Manifest element is shown in the following diagram:

dlagram | Manifest I:ll]{—n-—ELReference

1.0

53

Digital Signatures

namespace http://www.w3.org/2000/09/xmldsig#

annotation | contains references to the signed parts of the package. The producer shall not create a Manifest
element that references any data outside of the package. The consumer shall consider a Manifest
element that references data outside of the package to be in error. [M6.22]

12.2.4.19 SignatureProperties Element

The structure of a SignaturePropertieselement is shown in the following diagram:

dlagram | Siﬂllmllreprﬂ‘l}enies E]{—--—:E-Esignﬂtureproliew

1.0

namespace http://www.w3.0rg/2000/09/xmldsig#

Annotation | contains additional information items concerning the generation of signatures placed in
SignatureProperty elements.

12.2.4.20 SignatureProperty Element

The structure of a SignatureProperty element is shown in the following diagram:

diagram B asttriputes

FSiﬂllﬂ‘tllr&Per&l‘l‘y

,SignatureTime

namespace http://www.w3.0rg/2000/09/xmldsig#
attributes | |IName Type Use Default Fixed Annotation

Target xs:anyURI required Contains a unique identifier of the

Signature element.

Id xs:1D optional Contains signature property’s unique
identifier.

54

10

Digital Signatures

annotation | contains additional information concerning the generation of signatures.

12.2.4.21 SignatureTime Element

The structure of a SignatureTime element is shown in the following diagram:

diagram

namespace http://schemas.openxmlformats.org/package/2006/digital-signature

annotation | Ho|ds the date/time stamp for the signature.

12.2.4.22 Format Element

The structure of a Format element is shown in the following diagram:

namespace http://schemas.openxmlformats.org/package/2006/digital-signature

annotation | specifies the format of the date/time stamp. The producer shall create a data/time format that
conforms to the syntax described in the W3C Note "Date and Time Formats". The consumer shall
consider a format that does not conform to the syntax described in that WC3 note to be in error.
[M6.23]

The date and time format definition conforms to the syntax described in the W3C Note “Date and Time
Formats.”

12.2.4.23 Value Element

The structure of a Value element is shown in the following diagram:

55

Digital Signatures

namespace http://schemas.openxmlformats.org/package/2006/digital-signature

annotation | Ho|ds the value of the date/time stamp. The producer shall create a value that conforms to the
format specified in the Format element. The consumer shall consider a value that does not
conform to that format to be in error. [M6.24]

12.2.4.24 RelationshipReference Element

The structure of a RelationshipReference element is shown in the following diagram:

dlagram FRelmionshipReference |

namespace http://schemas.openxmlformats.org/package/2006/digital-signature
attributes | Name Type Use Default |Fixed |Annotation

Sourceld xsd:string required Specifies the value of the Id attribute of the

Relationship element.

annotation | specifies the Relationship element to be signed.

12.2.4.25 RelationshipsGroupReference Element

The structure of a RelationshipsGroupReference element is shown in the following diagram:

dlagram Fﬂelmionshi|:|-sGrou|J-Reference |

namespace http://schemas.openxmlformats.org/package/2006/digital-signature
attributes | |Name Type Use Default Fixed Annotation

SourceType xsd:anyURI required Specifies the value of the Type attribute of
Relationship elements.

annotation | specifies that the group of Relationship elements with the specified Type value is to
be signed.

56

w N

w

10
11

12

13
14

15
16

17

18

19
20
21
22

23

24
25
26
27
28
29
30
31
32
33
34

Digital Signatures

Format designers might permit producers to sign individual relationships in a package or the Relationships part
as a whole. [06.10] To sign a subset of relationships, the producer shall use the package-specific relationships
transform. The consumer shall use the package-specific relationships transform to validate the signature when a
subset of relationships are signed. [M6.25] The transform filters the contents of the Relationships part to include
only relationships that have Id values matching the specified Sourceld values or Type values matching the
specified SourceType values. A producer shall not specify more than one relationship transform for a particular
relationships part. A consumer shall treat the presence of more than one relationship transform for a particular
relationships part as an error. [M6.35]

Producers shall specify a canonicalization transform immediately following a relationships transform and
consumers that encounter a relationships transform that is not immediately followed by a canonicalization
transform shall generate an error. [M6.26]

12.2.4.26 Relationships Transform Algorithm

The relationships transform takes the XML document from the Relationships part and converts it to another
XML document.

The package implementer might create relationships XML that contains content from several namespaces, along
with versioning instructions as defined in Part 5: “Markup Compatibility and Extensibility”. [06.11]

The relationships transform algorithm is as follows:
Step 1: Process versioning instructions

1. The package implementer shall process the versioning instructions, considering that the only known
namespace is the Relationships namespace.

2. The package implementer shall remove all ignorable content, ignoring preservation attributes.
The package implementer shall remove all versioning instructions.

Step 2: Sort and filter relationships

1. The package implementer shall remove all namespace declarations except the Relationships namespace
declaration.

2. The package implementer shall remove the Relationships namespace prefix, if it is present.

The package implementer shall sort relationship elements by Id value in lexicographical order,
considering Id values as case-sensitive Unicode strings.

4. The package implementer shall remove all Relationship elements that do not have eitheran Id value
that matches any Sourceld valueor a Type value that matches any SourceType value, among the
Sourceld and SourceType values specified in the transform definition. Producers and consumers shall
compare values as case-sensitive Unicode strings. [M6.27] The resulting XML document holds all
Relationship elements that either have an Id value that matches a Sourceld value or a Type value that
matches a SourceType value specified in the transform definition.

Step 3: Prepare for canonicalization

57

w N

w

10

11

12
13

15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40

Digital Signatures

1. The package implementer shall remove all characters between the Relationships start tag and the first
Relationship start tag.

2. The package implementer shall remove any contents of the Relationship element.
The package implementer shall remove all characters between the last Relationship end tag and the
Relationships end tag.

4. |If there are no Relationship elements, the package implementer shall remove all characters between
the Relationships start tag and the Relationships end tag.

12.3 Digital Signature Example

The contents of digital signature parts are defined by the W3C Recommendation “XML-Signature Syntax and
Processing” with some package-specific modifications specified in §12.2.4.1.

[Example:

Digital signature markup for packages is illustrated in this example. For information about namespaces used in
this example, see Annex F, “Standard Namespaces and Content Types.”

<Signature Id="SignatureId" xmlns="http://www.w3.0rg/2000/09/xmldsig#">
<SignedInfo>
<CanonicalizationMethod Algorithm="http://www.w3.0rg/TR/2001/
REC-xml-c14n-20010315"/>
<SignatureMethod Algorithm="http://www.w3.0rg/2000/09/
xmldsig#dsa-shal"/>
<Reference
URI="#idPackageObject"
Type="http://www.w3.0rg/2000/09/xmldsig#0bject">
<Transforms>
<Transform Algorithm="http://www.w3.0rg/TR/2001/
REC-xml-c14n-20010315"/>
</Transforms>
<DigestMethod Algorithm="http://www.w3.0rg/2000/09/
xmldsigi#shal"/>
<DigestValue>...</DigestValue>
</Reference>
<Reference
URI="#Application"
Type="http://www.w3.0rg/2000/09/xmldsig#0bject">
<Transforms>
<Transform Algorithm="http://www.w3.0rg/TR/2001/
REC-xml-c14n-20010315"/>
</Transforms>
<DigestMethod
Algorithm="http://www.w3.0rg/2000/09/xmldsig#shal"/>
<DigestValue>...</DigestValue>

58

O 00 N OO s~ W N e

HOSA DA DA WWWWWWWWWW NN NN NN DNDNDNDN R R R R R R R R R
w N P O LV 0 N O U~ W N PR O L O NoOO Ul WN R O L O N WN R O

</Reference>
</SignedInfo>
<SignatureValue

<KeyInfo>
<X509Data>
<X509Cert
</X509Data>
</KeyInfo>

>...</SignatureValue>

ificate>...</X509Certificate>

Digital Signatures

<Object Id="idPackageObject" xmlns:pds="http://schemas.openxmlformats.org

/package/2006
<Manifest>

<Referenc

vnd.ms

<Trans

/digital-signature">

e URI="/document.xml?ContentType=application/
-document+xml">
forms>

<Transform Algorithm="http://www.w3.o0rg/TR/2001/

</Tran

REC-xml-c14n-20010315"/>
sforms>

<DigestMethod Algorithm="http://www.w3.0rg/2000/09/

xml

dsig#shal"/>

<DigestValue>...</DigestValue>

</Referen
<Referenc
URI="/
vnd
<Trans

ce>
e

_rels/document.xml.rels?ContentType=application/

.ms-package.relationships+xml">
forms>

<Transform Algorithm="http://schemas.openxmlformats.org/

package/2005/06/RelationshipTransform">
<pds:RelationshipReference SourceId="B1"/>
<pds:RelationshipReference SourceId="A1"/>
<pds:RelationshipReference SourceId="A11"/>
<pds:RelationshipsGroupReference SourceType=
"http://schemas.custom.com/required-resource"/>

</Transform>
<Transform Algorithm="http://www.w3.0rg/TR/2001/

</Tran

<Diges

xml

<Diges

</Referen
</Manifest>

REC-xml-c14n-20010315"/>

sforms>

tMethod Algorithm="http://www.w3.0rg/2000/09/
dsig#shal"/>

tValue>...</DigestValue>

ce>

59

O 00 N OO s~ W N e

=
= O

Jany
N

13

14
15

16
17
18

19

20

21
22
23
24
25
26

27
28
29
30
31
32
33

Digital Signatures

<SignatureProperties>
<SignatureProperty Id="idSignatureTime" Target="#Signatureld">
<pds:SignatureTime>
<pds:Format>YYYY-MM-DDThh:mmTZD</pds:Format>
<pds:Value>2003-07-16T19:20+01:00</pds:Value>
</pds:SignatureTime>
</SignatureProperty>
</SignatureProperties>
</Object>
<Object Id="Application">...</Object>
</Signature>

end example]

12.4 Generating Signatures

The steps for signing package contents follow the algorithm outlined in §3.1 of the W3C Recommendation “XML-
Signature Syntax and Processing,” with some modification for package-specific constructs.

The steps below might not be sufficient for generating signatures that contain application-specific Object
elements. Format designers that utilize application-specific Object elements shall also define the additional
steps that shall be performed to sign the application-specific Object elements.

To generate references:
1. For each package part being signed:

a. The package implementer shall apply the transforms, as determined by the producer, to the
contents of the part. [Note: Relationships transforms are applied only to Relationship parts.
When applied, the relationship transform filters the subset of relationships within the entire
Relationship part for purposes of signing. end note]

b. The package implementer shall calculate the digest value using the resulting contents of the
part.

2. The package implementer shall create a Reference element that includes the reference of the part with
the query component matching the content type of the target part, necessary Transform elements, the
DigestMethod element and the DigestValue element.

3. The package implementer shall construct the package-specific Object element containing a Manifest
element with both the child Reference elements obtained from the preceding step and a child
SignatureProperties element, which, in turn, contains a child SignatureTime element.

4. The package implementer shall create a reference to the resulting package-specific Object element.

When signing Object element data, package implementers shall follow the generic reference creation algorithm
described in §3.1 of the W3C Recommendation “XML-Signature Syntax and Processing”. [M6.28]

To generate signatures:

60

w N

w

10
11
12

13
14
15

16

17
18
19

20
21
22
23
24
25
26
27
28
29
30
31
32
33
34

36
37

Digital Signatures

1. The package implementer shall create the SignedInfo element with a SignatureMethodelement, a
CanonicalizationMethod element, and at least one Reference element.

2. The package implementer shall canonicalize the data and then calculate the SignatureValue element
using the SignedInfo element based on the algorithms specified in the SignedInfo element.

3. The package implementer shall construct a Signature element that includes SignedInfo, Object, and
SignatureValue elements. If a certificate is embedded in the signature, the package implementer shall
also include the Keylnfo element.

12.5 Validating Signatures

Consumers validate signatures following the steps described in §3.2 of the W3C Recommendation “XML-
Signature Syntax and Processing.” When validating digital signatures, consumers shall verify the content type
and the digest contained in each Reference descendant element of the SignedInfo element, and validate the
signature calculated using the SignedInfo element. [M6.29]

The steps below might not be sufficient to validate signatures that contain application-specific Object elements.
Format designers that utilize application-specific Object elements shall also define the additional steps that shall
be performed to validate the application-specific Object elements.

To validate references:

1. The package implementer shall canonicalize the SignedInfo element based on the
CanonicalizationMethod element specified in the SignedInfo element.
2. For each Reference element in the SignedInfo element:

a. The package implementer shall obtain the Object element to be digested.

For the package-specific Object element, the package implementer shall validate references to
signed parts stored in the Manifest element. The package implementer shall consider
references invalid if there is a missing part. [M6.9] [Note: If a relationships transform is specified
for a signed Relationships part, only the specified subset of relationships within the entire
Relationships part are validated. end note]

c. Forthe package-specific Object element, validation of Reference elements includes verifying
the content type of the referenced part and the content type specified in the reference query
component. Package implementers shall consider references invalid if these two values are
different. The string comparison shall be case-sensitive and locale-invariant. [M6.11]

d. The package implementer shall digest the obtained Object element using the DigestMethod
element specified in the Reference element.

e. The package implementer shall compare the generated digest value against the DigestValue
element in the Reference element of the Signedinfo element. Package implementers shall
consider references invalid if there is any mismatch. [M6.30]

To validate signatures:
1. The package implementer shall obtain the public key information from the KeyInfo element or from an

external source.

61

10
11

12

13
14

15

16
17

18

19

20

21
22
23
24

Digital Signatures

2. The package implementer shall obtain the canonical form of the SignatureMethod element using the
CanonicalizationMethod element. The package implementer shall use the result and the previously
obtained KeyInfo element to confirm the SignatureValue element stored in the SignedInfo element.
The package implementer shall decrypt the SignatureValueelement using the public key prior to
comparison.

12.5.1 Signature Validation and Streaming Consumption

Streaming consumers that maintain signatures shall be able to cache the parts necessary for detecting and
processing signatures. [M6.31]

12.6 Support for Versioning and Extensibility
The package digital signature infrastructure supports the exchange of signed packages between current and
future package clients.

12.6.1 Using Relationship Types

Future versions of the package format will specify distinct relationship types for revised signature parts. Using
these relationships, producers will be able to store separate signature information for current and previous
versions. Consumers will be able to choose the signature information they know how to validate.

Figure 12-2, “Part names and logical item names”, illustrates this versioning capability that will be available in
future versions of the package format.

Figure 12-2. A package containing versioned signatures

I Ty
Diigitd
gnatumr
orighn
Par
Relatiochip Pebuorhp
{ermon 1) {Werzion Z)
[igital Signature Migital Signature
XML Signature YL Signature
Part Part
[Wersion 1) {Wersion 2]
. A

12.6.2 Markup Compatibility Namespace for Package Digital Signatures

The package implementer shall not use the Markup Compatibility namespace, as specified in Annex F, “Standard
Namespaces and Content Types,” within the package-specific Object element. The package implementer shall
consider the use of the Markup Compatibility namespace within the package-specific Object element to be an
error. [M6.32]

62

10

Digital Signatures

Format designers might specify an application-specific package part format that allows for the embedding of
versioned or extended content that might not be fully understood by all present and future implementations.
Producers might create such embedded versioned or extended content and consumers might encounter such
content. [06.12] [Example: An XML package part format might rely on Markup Compatibility elements and
attributes to embed such versioned or extended content. end example]

If an application allows for a single part to contain information that might not be fully understood by all
implementations, then the format designer shall carefully design the signing and verification policies to account
for the possibility of different implementations being used for each action in the sequence of content creation,
content signing, and signature verification. Producers and consumers shall account for this possibility in their
signing and verification processing. [M6.33]

63

10
11
12
13

14

15

16
17

18

19

20

21
22

Resolving Unicode Strings to Part Names

Annex A. Resolving Unicode Strings to Part
Names

Package clients might use Unicode strings for referencing parts in a package. [Example: Values of xsd:anyURI
data type within XML markup are Unicode strings. end example]

This annex specifies how such Unicode strings shall be resolved to part names.

The diagram below illustrates the conversion path from the Unicode string to a part name. The numbered arcs
identify string transformations.

Figure A—-1. Strings are converted to part names for referencing parts

1] 2] 4]

Unicode string ——[1-2]—» IRI ——I[2-3] URI ——[3-4]-» Part Name

A Unicode string representing a URI can be passed to the producer or consumer. The producing or consuming
application shall convert the Unicode string to a URI. If the URI is a relative reference, the application shall
resolve it using the base URI of the part, which is expressed using the pack scheme, to the URI of the referenced
part. [M1.33]

The process for resolving a Unicode string to a part name follows Arcs [1-2], [2-3], and [3-4].

A.1 Creating an IRI from a Unicode String

With reference to Arc [1-2] in Figure A—1, a Unicode string is converted to an IRl by percent-encoding each ASCII
character that does not belong to the set of reserved or unreserved characters as defined in RFC 3986.

A.2 Creating a URI from an IRI

With reference to Arc [2-3] in Figure A—1, an IRl is converted to a URI by converting non-ASCII characters as
defined in Step 2 in §3.1 of RFC 3987

If a consumer converts the URI back into an IRI, the conversion shall be performed as specified in §3.2 of RFC
3987. [M1.34]

64

10
11
12
13
14
15
16
17

21

A3

Resolving Unicode Strings to Part Names

Resolving a Relative Reference to a Part Name

If the URI reference obtained in §A.2 is a URI, it is resolved in the regular way, that is, with no package-specific

considerations. Otherwise, if the URI reference is a relative reference, it is resolved (with reference to Arc [3-4]

in Figure A-1) as follows:

N

o vk w

~

10.

A4

Percent-encode each open bracket ([) and close bracket (]).

Percent-encode each percent (%) character that is not followed by a hexadecimal notation of an octet

value.

Un-percent-encode each percent-encoded unreserved character.

Un-percent-encode each forward slash (/) and back slash (\).

Convert all back slashes to forward slashes.

If present in a segment containing non-dot (“.”) characters, remove trailing dot (

each segment.

Replace each occurrence of multiple consecutive forward slashes (/) with a single forward slash.
If a single trailing forward slash (/) is present, remove that trailing forward slash.

“n

Remove complete segments that consist of three or more dots.

) characters from

Resolve the relative reference against the base URI of the part holding the Unicode string, as it is defined

in §5.2 of RFC 3986. The path component of the resulting absolute URI is the part name.

String Conversion Examples

[Example:

Examples of Unicode strings converted to IRIs, URIs, and part names are shown below:

Unicode string IRI URI Part name
/a/b.xml /a/b.xml /a/b.xml /a/b.xml
/a/u.xml /a/u.xml /a/%D1%86.xml| | /a/%D1%86.xml
/%41/%61.xml /%41/%61.xml /%41/%61.xml JA/a.xml
/%25XY.xml /%25XY.xml /%25XY.xml /%25XY.xml
J%XY.xml J%XY.xml /%25XY.xml /%25XY.xml
/%2541 .xml /%2541 .xml /%2541 .xml /%2541 .xml
/../a.xml /../a.xml /../a.xml Ja.xml
/./u.xml /./u.xml /./%D1%86.xm| | /%D1%86.xml
/%2e/%2e/a.xml | /%2e/%2e/a.xml| | /%2e/%2e/a.xml| | /a.xml
\a.xml %5Ca.xml %5Ca.xml Ja.xml
\%41.xml %5C%41.xml %5C%41.xml JA.xml
/%D1%86.xml /%D1%86.xml /%D1%86.xml /%D1%86.xml

\%2e/a.xml

%5C%2e/a.xml

%5C%2e/a.xml

Ja.xml

end example]

65

10
11

12

13
14
15
16

17

18
19
20

21
22

23

24
25
26

27
28
29

30

Pack URI

Annex B. Pack URI

A package is a logical entity that holds a collection of parts. This Open Packaging specification defines a way to
use URIs to reference part resources inside a package. This approach defines a new scheme in accordance with
the guidelines in RFC 3986.

The following terms are used as they are defined in RFC 3986: scheme, authority, path, segment, reserved
characters, sub-delims, unreserved characters, pchar, pct-encoded characters, query, fragment, and resource.

B.1 Pack URI Scheme

RFC 3986 provides an extensible mechanism for defining new kinds of URIs based on new schemes. Schemes are
the prefix in a URI before the colon. [Example: “http”, “ftp”, “file” end example] This Open Packaging
specification defines a specific URI scheme used to refer to parts in a package: the pack scheme. A URI that uses

the pack scheme is called a pack URI.

The pack URI grammar is defined as follows:

pack_URI = "pack://" authority ["/" | path]
authority = *(unreserved | sub-delims | pct-encoded)
path = 1*("/" segment)

segment = 1*(pchar)

unreserved, sub-delims, pchar and pct-encoded are defined in RFC 3986

The authority component contains an embedded URI that points to a package. The package implementer shall
create an embedded URI that meets the requirements defined in RFC 3986 for a valid URI. [M7.1] §B.3 describes
the rules for composing pack URIs by combining the URI of an entire package resource with a part name.

The package implementer shall not create an authority component with an unescaped colon (:) character.
[M7.4] Consumer applications, based on the obsolete URI specification RFC 2396, might tolerate the presence of
an unescaped colon character in an authority component. [07.1]

The optional path component identifies a particular part within the package. The package implementer shall
only create path components that conform to the part naming rules. When the path component is missing, the
resource identified by the pack URI is the package as a whole. [M7.2]

In order to be able to embed the URI of the package in the pack URI, it is necessary either to replace or to
percent-encode occurrences of certain characters in the embedded URI. For example, forward slashes (/) are
replaced with commas (,). The rules for these substitutions are described in §B.3.

The optional query component in a pack URI is ighored when resolving the URI to a part.

66

10

11

12
13

14

15

16

17

18

19
20

21

22

23

24
25
26
27
28
29
30

Pack URI
A pack URI might have a fragment identifier as specified in RFC 3986. If present, this fragment applies to
whatever resource the pack URI identifies.
[Example:
Example B—1. Using the pack URI to identify a part

The following URI identifies the “/a/b/foo.xml” part within the “http://www.openxmlformats.org/my.container”
package resource:

pack://http%3c, ,www.openxmlformats.org,my.container/a/b/foo.xml
end example]
[Example:
Example B—2. Equivalent pack URIs
The following pack URIs are equivalent:

pack://http%3c, ,www.openxmlformats.org,my.container
pack://http%3c, ,www.openxmlformats.org,my.container/

end example)
[Example:
Example B—3. A pack URI with percent-encoded characters

The following URI identifies the “/c/d/bar.xml” part within the
“http://myalias:pswr@www.my.com/containers.aspx?my.container” package:

pack://http%3c,,myalias%3cpswr%40www.my.com,containers.aspx%3fmy.container
/c/d/bar.xml

end example]

B.2 Resolving a Pack URI to a Resource

The following is an algorithm for resolving a pack URI to a resource (either a package or a part):

1. Parse the pack URI into the potential three components: scheme, authority, path, as well as any
fragment identifier.

In the authority component, replace all commas (,) with forward slashes (/).

Un-percent-encode ASCII characters in the resulting authority component.

The resultant authority component is the URI for the package as a whole.

ik wN

If the path component is empty, the pack URI resolves to the package as a whole and the resolution
process is complete.

67

10

11

12

13

14

15
16

17

18

19
20

21
22

23
24

25
26
27
28
29
30
31

Pack URI

6. A non-empty path component shall be a valid part name. If it is not, the pack URl is invalid.
7. The pack URI resolves to the part with this part name in the package identified by the authority
component.

[Example:
Example B—4. Resolving a pack URI to a resource
Given the pack URI:
pack://http%3c, ,www.my.com,packages.aspx%3fmy.package/a/b/foo.xml
The components:

<authority>= http%3c, ,www.my.com,packages.aspx%3fmy.package
<path>= /a/b/foo.xml

Are converted to the package URI:
http://www.my.com/packages.aspx?my.package
And the path:
/a/b/foo.xml

Therefore, this URI refers to a part named “/a/b/foo.xml” in the package at the following URI:
http://www.my.com/packages.aspx?my.package.

end example]

B.3 Composing a Pack URI

The following is an algorithm for composing a pack URI from the URI of an entire package resource and a part
name.

In order to be suitable for creating a pack URI, the URI reference of a package resource shall conform to
RFC 3986 requirements for valid absolute URlIs.

To compose a pack URI from the absolute package URI and a part name, the following steps shall be performed,
in order:

1. Remove the fragment identifier from the package URI, if present.
Percent-encode all percent signs (%), question marks (?), at signs (@), colons (:) and commas (,) in the
package URI.

3. Replace all forward slashes (/) with commas (,) in the resulting string.

4. Append the resulting string to the string “pack://”.

5. Append a forward slash (/) to the resulting string. The constructed string represents a pack URI with a
blank path component.

68

10

11

12

13

14

15

16

17
18
19
20

21

Pack URI
6. Using this constructed string as a base URI and the part name as a relative reference, apply the rules
defined in RFC 3986 for resolving relative references against the base URI.
The result of this operation will be the pack URI that refers to the resource specified by the part name.
[Example:
Example B-5. Composing a pack URI
Given the package URI:
http://www.my.com/packages.aspx?my.package
And the part name:
/a/foo.xml
The pack URI is:
pack://http%3c, ,www.my.com,packages.aspx%3fmy.package/a/foo.xml

end example]

B.4 Equivalence

In some scenarios, such as caching or writing parts to a package, it is necessary to determine if two pack URIs are
equivalent without resolving them.

The package implementer shall consider pack URIs equivalent if:

The scheme components are octet-by-octet identical after they are both converted to lowercase; and
The URIs, decoded as described in §B.2 from the authority components are equivalent (the equivalency
rules by scheme, as per RFC 3986); and

3. The path components are equivalent when compared as case-insensitive ASCII strings.

[M7.3]

69

10

11

12
13
14
15
16
17
18
19
20
21
22
23
24

25

26
27
28
29
30

31

ZIP Appnote.txt Clarifications

Annex C. ZIP Appnote.txt Clarifications

The ZIP specification includes a number of features that packages do not support. Some ZIP features are clarified
in the context of this Open Packaging specification. Package producers and consumers shall adhere to the
requirements noted below.

C.1 Archive File Header Consistency

Data describing files stored in the archive is substantially duplicated in the Local File Headers and Data
Descriptors, and in the File headers within the Central Directory Record. For a ZIP archive to be a valid physical
layer for a package, the package implementer shall ensure that the ZIP archive holds equal values in the
appropriate fields of every File Header within the Central Directory and the corresponding Local File Header and
Data Descriptor pair. [M3.14]

C.2 Table Key

e “Yes” — During consumption of a package, a "Yes" value for a field in a table in Annex C indicates a
package implementer shall support reading the ZIP archive containing this record or field, however,
support may mean ignoring. [M3.15] During production of a package, a “Yes” value for a field in a table
in Annex C indicates that the package implementer shall write out this record or field. [M3.16]

e “No” — A “No” value for afield in a table in Annex C indicates the package implementer shall not use
this record or field during consumption or production of packages. [M3.17]

e “Optional” — An “Optional” value for a record in a table in Annex C indicates that package implementers
might write this record during production. [03.2]

e “Partially, details below” — A “Partially, details below” value for a record in a table in Annex C indicates
that the record contains fields that might not be supported by package implementers during production
or consumption. See the details in the corresponding table to determine requirements. [M3.18]

e “Only used when needed” — The value “Only used when needed” associated with a record in a table in
Annex C indicates that the package implementer shall use the record only when needed to store data in
the ZIP archive. [M3.19]

Table C-1,“Support for records”, specifies the requirements for package production, consumption, and editing
in regard to particular top-level records or fields described in the ZIP Appnote.txt. [Note: Editing, in this context,
means in-place modification of individual records. A format specification can require editing applications to
instead modify content in-memory and re-write all parts and relationships on each save in order to maintain
more rigorous control of ZIP record usage. end note]

Table C-1. Support for records

Record name Supported on Supported on Pass through on
Consumption Production editing

70

ZIP Appnote.txt Clarifications

Record name

Supported on

Supported on

Pass through on

Consumption Production editing
Local File Header Yes (partially, details Yes (partially, details Yes
below) below)
File data Yes Yes Yes
Data descriptor Yes Optional Optional
Archive decryption No No No
header
Archive extra data No No No
record
Central directory Yes (partially, details Yes (partially, details Yes
structure: below) below)
File header
Central directory Yes (ignore the Optional Optional
structure: signature data)
Digital signature
Zip64 end of central Yes (partially, details Yes (partially, details Optional
directory record V1 below) below, used only when
(from spec version needed)
4.5)
Zip64 end of central No No No
directory record V2
(from spec version
6.2)
Zip64 end of central Yes (partially, details Yes (partially, details Optional
directory locator below) below, used only when
needed)
End of central Yes (partially, details Yes (partially, details Yes

directory record

below)

below, used only when
needed)

Table C-2, “Support for record components”, specifies the requirements for package production, consumption,

and editing in regard to individual record components described in the ZIP Appnote.txt.

Table C-2. Support for record components

Record Field Supported on Supported on Pass through
Consumption Production on editing
Local File Header Local file header signature | Yes Yes Yes

Version needed to extract

Yes (partially, see
Table C-3)

Yes (partially, see
Table C-3)

Yes (partially,
see Table C-3)

71

ZIP Appnote.txt Clarifications

Record

Field

Supported on
Consumption

Supported on
Production

Pass through
on editing

General purpose bit flag

Yes (partially, see
Table C-5)

Yes (partially, see
Table C-5)

Yes (partially,
see Table C-5)

Compression method

Yes (partially, see

Yes (partially, see

Yes (partially,

Table C-4) Table C-4) see Table C-4)
Last mod file time Yes Yes Yes
Last mod file date Yes Yes Yes
Crc-32 Yes Yes Yes
Compressed size Yes Yes Yes
Uncompressed size Yes Yes Yes
File name length Yes Yes Yes
Extra field length Yes Yes Yes
File name (variable size) Yes Yes Yes

Extra field (variable size)

Yes (partially, see

Yes (partially, see

Yes (partially,

Table C-6) Table C-6) see Table C-6)

Central directory Central file header Yes Yes Yes
structure: File header signature

version made by: high Yes Yes (0 =MS-DOS | Yes

byte is default

publishing value)
Version made by: low byte | Yes Yes Yes
Version needed to extract | Yes (partially, see | Yes(1.0,1.1,2.0, | Yes

(see Table C-3 for details)

Table C-3)

4.5)

General purpose bit flag

Yes (partially, see
Table C-5)

Yes (partially, see
Table C-5)

Yes (partially,
see Table C-5)

Compression method

Yes (partially, see

Yes (partially, see

Yes (partially,

Table C-4) Table C-4) see Table C-4)
Last mod file time (Pass Yes Yes Yes
through, no
interpretation)
Last mod file date (Pass Yes Yes Yes
through, in interpretation)
Crc-32 Yes Yes Yes
Compressed size Yes Yes Yes
Uncompressed size Yes Yes Yes
File name length Yes Yes Yes
Extra field length Yes Yes Yes

72

ZIP Appnote.txt Clarifications

Record Field Supported on Supported on Pass through
Consumption Production on editing
File comment length Yes Yes Yes
(always set to 0)

Disk number start Yes (partial — no | Yes (always 1 Yes (partial —
multi disk disk) no multi disk
archives) archives)

Internal file attributes Yes Yes Yes

External file attributes Yes Yes Yes

(Pass through, no (MS DOS default

interpretation) value)

Relative offset of local Yes Yes Yes

header

File name (variable size) Yes Yes Yes

Extra field (variable size)

Yes (partially, see

Yes (partially, see

Yes (partially,

Table C-6) Table C-6) see Table C-6)

File comment (variable Yes Yes (always set to | Yes

size) empty)

Zip64 end of central Zip64 end of central Yes Yes Yes
directory V1 (from spec | directory signature

version 4.5, only used Size of zip64 end of central | Yes Yes Yes
when needed) directory

Version made by: high Yes Yes (0 = MS-DOS | Yes

byte (Pass through, no is default

interpretation) publishing value)

Version made by: low byte | Yes Yes (always 4.5 or | Yes

above)

Version needed to extract | Yes (4.5) Yes (4.5) Yes (4.5)

(see Table C-3 for details)

Number of this disk Yes (partial — no | Yes (always 1 Yes (partial —
multi disk disk) no multi disk
archives) archives)

Number of the disk with Yes (partial — no | Yes (always 1 Yes (partial —

the start of the central multi disk disk) no multi disk

directory archives) archives)

Total number of entriesin | Yes Yes Yes

the central directory on

this disk

Total number of entriesin | Yes Yes Yes

the central directory

73

ZIP Appnote.txt Clarifications

Record Field Supported on Supported on Pass through
Consumption Production on editing
Size of the central Yes Yes Yes
directory
Offset of start of central Yes Yes Yes
directory with respect to
the starting disk number
Zip64 extensible data Yes No Yes
sector
Zip64 end of central Zip64 end of central dir Yes Yes Yes
directory locator (only locator signature
used when needed) Number of the disk with Yes (partial — no | Yes (always 1 Yes (partial —
the start of the zip64 end multi disk disk) no multi disk
of central directory archives) archives)
Relative offset of the zip64 | Yes Yes Yes
end of central directory
record
Total number of disks Yes (partial — no | Yes (always 1 Yes (partial —
multi disk disk) no multi disk
archives) archives)
End of central directory | End of central dir Yes Yes Yes
record signature
Number of this disk Yes (partial — no | Yes (always 1 Yes (partial —
multi disk disk) no multi disk
archives) archives)
Number of the disk with Yes (partial — no | Yes (always 1 Yes (partial —
the start of the central multi disk archive) | disk) no multi disk
directory archive)
Total number of entriesin | Yes Yes Yes
the central directory on
this disk
Total number of entriesin | Yes Yes Yes
the central directory
Size of the central Yes Yes Yes
directory
Offset of start of central Yes Yes Yes
directory with respect to
the starting disk number
ZIP file comment length Yes Yes Yes
ZIP file comment Yes No Yes

74

ZIP Appnote.txt Clarifications

Table C-3, “Support for Version Needed to Extract field”, specifies the detailed production, consumption, and

editing requirements for the Extract field, which is fully described in the ZIP Appnote.txt.

Table C-3. Support for Version Needed to Extract field

Version Feature Supported on Supported on Pass through on
Consumption Production editing

1.0 Default value Yes Yes Yes

1.1 File is a volume label Ignore No (rewrite/remove)

2.0 File is a folder (directory) Ignore No (rewrite/remove)

2.0 File is compressed using Yes Yes Yes
Deflate compression

2.0 File is encrypted using No No No
traditional PKWARE
encryption

2.1 File is compressed using No No No
Deflate64(tm)

2.5 File is compressed using No No No
PKWARE DCL Implode

2.7 File is a patch data set No No No

4.5 File uses ZIP64 format Yes Yes Yes
extensions

4.6 File is compressed using No No No
BZIP2 compression

5.0 File is encrypted using DES No No No

5.0 File is encrypted using 3DES | No No No

5.0 File is encrypted using No No No
original RC2 encryption

5.0 File is encrypted using RC4 No No No
encryption

5.1 File is encrypted using AES No No No
encryption

5.1 File is encrypted using No No No
corrected RC2 encryption

5.2 File is encrypted using No No No
corrected RC2-64
encryption

6.1 File is encrypted using non- | No No No
OAEP key wrapping

6.2 Central directory encryption | No No No

75

ZIP Appnote.txt Clarifications

Table C-4, “Support for Compression Method field”, specifies the detailed production, consumption, and editing
requirements for the Compression Method field, which is fully described in the ZIP Appnote.txt.

Table C—4. Support for Compression Method field

Code Method Supported on | Supported Pass
Consumption on through
Production | on editing

0 The file is stored (no compression) Yes Yes Yes

1 The file is Shrunk No No No

2 The file is Reduced with compression No No No
factor 1

3 The file is Reduced with compression No No No
factor 2

4 The file is Reduced with compression No No No
factor 3

5 The file is Reduced with compression No No No
factor 4

6 The file is Imploded No No No

7 Reserved for Tokenizing compression No No No
algorithm

8 The file is Deflated Yes Yes Yes

9 Enhanced Deflating using Deflate64™ No No No

10 PKWARE Data Compression Library No No No
Imploding

11 Reserved by PKWARE No No No

Table C-5, “Support for modes/structures defined by general purpose bit flags”, specifies the detailed
production, consumption, and editing requirements when utilizing these general-purpose bit flags within
records.

Table C-5. Support for modes/structures defined by general purpose bit flags

Bit Feature Supported Supported Pass
on on through
Consumption | Production on
editing
0 If set, indicates that the file is encrypted. No No No

76

ZIP Appnote.txt Clarifications

Bit Feature Supported Supported Pass
on on through
Consumption | Production on
editing
1, Bit | Bit Yes Yes Yes
2 2 | 1
0 0 Normal (-en) compression option
was used.
0 1 Maximum (-exx/-ex) compression
option was used.
1 0 Fast (-ef) compression option was
used.
1 1 Super Fast (-es) compression

option was used.

3 If this bit is set, the fields crc-32, compressed size Yes Yes Yes
and uncompressed size are set to zero in the local
header. The correct values are put in the data
descriptor immediately following the compressed
data. (PKZIP version 2.04g for DOS only recognizes
this bit for method 8 compression, newer versions
of PKZIP recognize this bit for any compression

method.)

4 Reserved for use with method 8, for enhanced Ignore Bitssetto | Yes
deflating 0

5 If this bit is set, this indicates that the file is Ignore Bits setto | Yes
compressed patched data. (Requires PKZIP version 0
2.70 or greater.)

6 Strong encryption. If this bit is set, you should set Ignore Bits setto | Yes
the version needed to extract value to at least 50 0

and you must also set bit 0. If AES encryption is
used, the version needed to extract value must be

at least 51.

7 Currently unused Ignore Bitssetto | Yes
0

8 Currently unused Ignore Bits setto | Yes
0

9 Currently unused Ignore Bits setto | Yes
0

10 | Currently unused Ignore Bits setto | Yes
0

11 | Currently unused Ignore Bits setto | Yes
0

77

ZIP Appnote.txt Clarifications

Bit Feature Supported Supported Pass
on on through
Consumption | Production on
editing
12 | Reserved by PKWARE for enhanced compression Ignore Bitssetto | Yes
0
13 | Used when encrypting the Central Directory to Ignore Bits setto | Yes
indicate selected data values in the Local Header 0
are masked to hide their actual values. See the
section describing the Strong Encryption
Specification for details.
14 | Reserved by PKWARE Ignore Bits setto | Yes
0
15 | Reserved by PKWARE Ignore Bits setto | Yes
0

Table C-6, “Support for Extra field (variable size), PKWARE-reserved”, specifies the detailed production,

consumption, and editing requirements for the Extra field entries reserved by PKWARE and described in the ZIP

Appnote.txt.

Table C-6. Support for Extra field (variable size), PKWARE-reserved

Field Field description Supported on Supported on Pass through
ID Consumption Production on editing

0x0001 | ZIP64 extended information | Yes Yes Optional
extra field

0x0007 | AV Info Ignore No Yes

0x0008 | Reserved for future Unicode | Ignore No Yes
file name data (PFS)

0x0009 | 0S/2 Ignore No Yes

0x000a | NTFS Ignore No Yes

0x000c | OpenVMS Ignore No Yes

0x000d | Unix Ignore No Yes

0x000e | Reserved for file stream and | Ignore No Yes
fork descriptors

0x000f | Patch Descriptor Ignore No Yes

0x0014 | PKCS#7 Store for X.509 Ignore No Yes
Certificates

0x0015 | X.509 Certificate ID and Ignore No Yes
Signature for individual file

78

ZIP Appnote.txt Clarifications

Field Field description Supported on Supported on Pass through
ID Consumption Production on editing
0x0016 | X.509 Certificate ID for Ignore No Yes
Central Directory
0x0017 | Strong Encryption Header Ignore No Yes
0x0018 | Record Management Ignore No Yes
Controls
0x0019 | PKCS#7 Encryption Ignore No Yes
Recipient Certificate List
0x0065 | IBM S/390 (Z390), AS/400 Ignore No Yes
(1400) attributes —
uncompressed
0x0066 | Reserved for IBM S/390 Ignore No Yes

(2390), AS/400 (1400)
attributes — compressed

0x4690 | POSZIP 4690 (reserved) Ignore No Yes

Table C-7, “Support for Extra field (variable size), third-party extensions”, specifies the detailed production,
consumption, and editing requirements for the Extra field entries reserved by third parties and described in the
ZIP Appnote.txt.

Table C-7. Support for Extra field (variable size), third-party extensions

Field Field description Supported on Supported on Pass through on
ID Consumption Production editing
0x07c8 | Macintosh Ignore No Yes
0x2605 | Ziplt Macintosh Ignore No Yes
0x2705 | Ziplt Macintosh Ignore No Yes
1.3.5+
0x2805 | Ziplt Macintosh Ignore No Yes
1.3.5+
0x334d | Info-ZIP Macintosh Ignore No Yes
0x4341 | Acorn/SparkFS Ignore No Yes
0x4453 | Windows NT security | Ignore No Yes
descriptor (binary
ACL)
0x4704 | VM/CMS Ignore No Yes
0x470f | MVS Ignore No Yes
0x4b46 | FWKCS MD5 (see Ignore No Yes
below)

79

ZIP Appnote.txt Clarifications

Field Field description Supported on Supported on Pass through on
ID Consumption Production editing
Ox4c41 | 0S/2 access control Ignore No Yes
list (text ACL)
0x4d49 | Info-ZIP OpenVMS Ignore No Yes
Ox4f4c | Xceed original Ignore No Yes
location extra field
0x5356 | AOS/VS (ACL) Ignore No Yes
0x5455 | extended timestamp Ignore No Yes
0x554e | Xceed unicode extra Ignore No Yes
field
0x5855 | Info-ZIP Unix (original, | Ignore No Yes
also 0S/2, NT, etc)
0x6542 | BeOS/BeBox Ignore No Yes
0x756e | ASi Unix Ignore No Yes
0x7855 | Info-ZIP Unix (new) Ignore No Yes
0xa220 | Padding, Microsoft Optional Optional Optional
Oxfd4a | SMS/QDOS Ignore No Yes

The package implementer shall ensure that all 64-bit stream record sizes and offsets have the high-order bit = 0.

[M3.20]

The package implementer shall ensure that all fields that contain “number of entries” do not exceed

2,147,483,647. [M3.21]

80

Schemas - XML Schema

Annex D. Schemas - XML Schema

This Open Packaging Conventions specification includes a family of schemas defined using the XML Schema 1.0
syntax. The normative definitions of these schemas reside in an accompanying file named
OpenPackagingConventions-XMLSchema.zip, which is distributed in electronic form only.

If discrepancies exist between the electronic version of a schema and its corresponding representation as
published in this part, Part 2, the electronic version is the definitive version.

81

Schemas - RELAX NG

Annex E. Schemas - RELAX NG

This clause is informative.

This Open Packaging Conventions specification includes a family of schemas defined using the RELAX NG syntax.
The definitions of these schemas reside in an accompanying file named
OpenPackagingConventions-RELAXNG.zip, which is distributed in electronic form only.

If discrepancies exist between the RELAX NG version of a schema and its corresponding XML Schema, the XML
Schema is the definitive version.

End of informative text.

82

10

11

Standard Namespaces and Content Types

Annex F. Standard Namespaces and Content
Types

The namespaces available for use in a package are listed in Table F-1, Package-wide namespaces

Table F-1. Package-wide namespaces

Description Namespace URI
Content Types http://schemas.openxmliformats.org/package/2006/content-types
Core Properties http://schemas.openxmliformats.org/package/2006/metadata/core-properties
Digital Signatures http://schemas.openxmliformats.org/package/2006/digital-signature
Relationships http://schemas.openxmliformats.org/package/2006/relationships
Markup Compatibility | http://schemas.openxmliformats.org/markup-compatibility/2006

The content types available for use in a package are listed in Table F-2, Package-wide content types

Table F-2. Package-wide content types

Description Content Type
Core Properties part application/vnd.openxmliformats-package.core-properties+xml
Digital Signature Certificate application/vnd.openxmlformats-package.digital-signature-
part certificate
Digital Signature Origin part application/vnd.openxmlformats-package.digital-signature-origin
Digital Signature XML Signature | application/vnd.openxmlformats-package.digital-signature-
part xmlsignature+xml
Relationships part application/vnd.openxmlformats-package.relationships+xml

Package implementers and format designers shall not create content types with parameters for the package-
specific parts defined in this Open Packaging specification and shall treat the presence of parameters in these
content types as an error. [M1.22]

The relationship types available for use in a package are listed in Table F-3, Package-wide relationship types.

Table F-3. Package-wide relationship types

Description Relationship Type

Core Properties http://schemas.openxmlformats.org/package/2006/relationships/metadata/c
ore-properties

Digital Signature http://schemas.openxmliformats.org/package/2006/relationships/digital-
signature/signature

83

Standard Namespaces and Content Types

Description Relationship Type
Digital Signature http://schemas.openxmlformats.org/package/2006/relationships/digital-
Certificate signature/certificate
Digital Signature http://schemas.openxmlformats.org/package/2006/relationships/digital-
Origin signature/origin
Thumbnail http://schemas.openxmlformats.org/package/2006/relationships/metadata/t
humbnail

84

10

11

12
13
14

15
16

Physical Model Design Considerations

Annex G. Physical Model Design
Considerations

This annex is informative.

The physical model defines the ways in which packages are produced and consumed. This model is based on
three components: a producer, a consumer, and a pipe between them.

Figure G—1. Components of the physical model

Wrriter - Reader
Ripe
interfrocess pipe O

procEss FOCESS
e
t“" lacal-ares network A
=

=T

prirter

A producer is a piece of software or a device that writes packages. A consumer is a piece of software or a device

that reads packages. A device is a piece of hardware, such as a printer or scanner that performs a single function

or set of functions. Data is carried from the producer to the consumer by a pipe.
In local access, the pipe carries data directly from a producer to a consumer on a single device.

In networked access the consumer and the producer communicate with each other over a protocol. The
significant communication characteristics of this pipe are speed and request latency. For example, this
communication might occur across a process boundary or between a server and a desktop computer.

In order to maximize performance, designers of physical package formats consider access style, layout style, and

communication style.

85

10
11

12

13
14
15
16

17
18
19
20

21

22
23
24

25

26
27

28

29
30
31

Physical Model Design Considerations

G.1 Access Styles

The access style in which local access or networked access is conducted determines the simultaneity possible
between processing and input-output operations.

G.1.1 Direct Access Consumption

Direct access consumption allows consumers to request the specific portion of the package desired, without
sequentially processing the preceding parts of the package. For example a byte-range request. This is the most
common access style.

G.1.2 Streaming Consumption

Streaming consumption allows consumers to begin processing parts before the entire package has arrived.
Physical package formats should be designed to allow consumers to begin interpreting and processing the data
they receive before all of the bits of the package have been delivered through the pipe.

G.1.3 Streaming Creation

Streaming creation allows producers to begin writing parts to the package without knowing in advance all of the
parts that will be written. For example, when an application begins to build a print spool file package, it may not
know how many pages the package will contain. Likewise, a program that is generating a report may not know
initially how long the report will be or how many pictures it will have.

In order to support streaming creation, the package implementer should allow a producer to add parts after
other parts have already been added. A Consumer shall not require a producer to state how many parts they will
create when they start writing. The package implementer should allow a producer to begin writing the contents
of a part without knowing the ultimate length of the part.

G.1.4 Simultaneous Creation and Consumption

Simultaneous creation and consumption allows streaming creation and streaming consumption to happen at the
same time on a package. Because of the benefits that can be realized within pipelined architectures that use it,
the package implementer should support simultaneous creation and consumption in the physical package.

G.2 Layout Styles

The style in which parts are ordered within a package is referred to as the layout style. Parts can be arranged in
one of two styles: simple ordering or interleaved ordering.

G.2.1 Simple Ordering

With simple ordering, parts are arranged contiguously. When a package is delivered sequentially, all of the bytes
for the first part arrive first, followed by all of the bytes for the second part, and so on. When such a package
uses simple ordering, all of the bytes for each part are stored contiguously.

86

10
11

12

13
14
15

16

17
18

19

20
21
22
23
24

25

Physical Model Design Considerations

G.2.2 Interleaved Ordering

With interleaved ordering, pieces of parts are interleaved, allowing optimal performance in certain scenarios.
For example, interleaved ordering improves performance for multi-media playback, where video and audio are
delivered simultaneously and inline resource referencing, where a reference to an image occurs within markup.

By breaking parts into pieces and interleaving those pieces, it is possible to optimize performance while allowing
easy reconstruction of the original contiguous part.

Because of the performance benefits it provides, package implementers should support interleaving in the
physical package. The package implementer might handle the internal representation of interleaving differently
in different physical models. Regardless of how the physical model handles interleaving, a part that is broken
into multiple pieces in the physical file is considered one logical part; the pieces themselves are not parts and
are not addressable.

G.3 Communication Styles

The style in which a package and its parts are delivered by a producer or accessed by a consumer is referred to
as the communication style. Communication can be based on sequential delivery of or random access to parts.
The communication style used depends on the capabilities of both the pipe and the physical package format.

G.3.1 Sequential Delivery

With sequential delivery, all of the physical bits in the package are delivered in the order they appear in the.
Generally, all pipes support sequential delivery.

G.3.2 Random Access

Random access allows consumers to request the delivery of a part out of sequential physical order. Some pipes
are based on protocols that can enable random access. For example, HTTP 1.1 with byte-range support. In order
to maximize performance, the package implementer should support random access in both the pipe and the
physical package. In the absence of this support, consumers need to wait until the parts they need are delivered
sequentially.

End of informative text.

87

10
11
12

13

14

15

16
17
18
19
20
21
22

23
24

25

26

Conformance Requirements

Annex H. Conformance Requirements

This annex is informative.

This annex summarizes all conformance requirements for producers and consumers implementing the Open
Packaging Conventions. It is intended as a convenience; the text in the referenced clause or subclause is
considered normative in all cases.

Conformance requirements are divided into tables based on their general topic below. The tables contain the
requirements that producers and consumers shall follow, those that they should follow, and those that are
optional. Each conformance requirement is given a unique ID comprised of a letter (M — MANDATORY; S —
SHOULD; O — OPTIONAL), an identifier for the topic it relates to, and a unique ID within that topic. Mandatory
requirements are those stated with the normative terms "shall," "shall not," or any of their normative
equivalents. Should items are those stated with the normative terms "should," "should not," or any of their

normative equivalents. Optional requirements are those stated with the normative terms "can," "cannot,"

"might," "might not," or any of their normative equivalents.

Producers and consumers might use these IDs to report error conditions.
The top-level topics and their identifiers are described as follows:

Package Model requirements
Physical Packages requirements
ZIP Physical Mapping requirements
Core Properties requirements
Thumbnail requirements

Digital Signatures requirements

No ks wnNR

Pack URI requirements

Additionally, these tables identify, as does the referenced text, who is burdened with enforcing or supporting
the requirement:

H.1 Package Model

Table H-1. Package model conformance requirements

ID Rule Reference Package Format Format Format
Implementer | Designer | Producer | Consumer

M1.1 | The package implementershall | 8.1,8.1.1 x
require a part name.

88

Conformance Requirements

Rule

Reference

Package
Implementer

Format
Designer

Format
Producer

Format
Consumer

M1.2

The package implementer shall
require a content type and the
format designer shall specify
the content type.

8.1

X

X

M1.3

A part name shall not have
empty segments.

M1.4

A part name shall start with a
forward slash (“/”) character.

M1.5

A part name shall not have a
forward slash as the last
character.

M1.6

A segment shall not hold any
characters other than pchar
characters. .

M1.7

A segment shall not contain
percent-encoded forward slash
(“/”), or backward slash (“\”)
characters.

M1.8

A segment shall not contain
percent-encoded unreserved
characters.

M1.9

A segment shall not end with a
dot (“.”) character.

M1.10

A segment shall include at least
one non-dot character

M1.11

A package implementer shall
neither create nor recognize a
part with a part name derived
from another part name by
appending segments to it.

8.1.1.1

M1.12

Part name equivalence is
determined by comparing part
names as case-insensitive ASCII
strings. Packages shall not
contain equivalent part names
and package implementers
shall neither create nor
recognize packages with
equivalent part names.

8.1.1.2

89

Conformance Requirements

Rule

Reference

Package
Implementer

Format
Designer

Format
Producer

Format
Consumer

M1.13

Package implementers shall
only create and only recognize
parts with a content type;
format designers shall specify a
content type for each part
included in the format. Content
types for package parts shall fit
the definition and syntax for
media types as specified in RFC
2616, §3.7.

8.1.2

X

X

M1.14

Content types shall not use
linear white space either
between the type and subtype
or between an attribute and its
value. Content types also shall
not have leading or trailing
white spaces. Package
implementers shall create only
such content types and shall
require such content types
when retrieving a part from a
package; format designers shall
specify only such content types
for inclusion in the format.

8.1.2

M1.15

The package implementer shall
require a content type that
does not include comments and
the format designer shall
specify such a content type.

8.1.2

M1.16

If the package implementer
specifies a growth hint, it is set
when a part is created and the
package implementer shall not
change the growth hint after
the part has been created.

8.1.3

90

Conformance Requirements

Rule

Reference

Package
Implementer

Format
Designer

Format
Producer

Format
Consumer

M1.17

XML content shall be encoded
using either UTF-8 or UTF-16. If
any part includes an encoding
declaration, as defined in §4.3.3
of the XML 1.0 specification,
that declaration shall not name
any encoding other than UTF-8
or UTF-16. Package
implementers shall enforce this
requirement upon creation and
retrieval of the XML content.

8.14

X

M1.18

DTD declarations shall not be
used in the XML markup
defined in this Open Packaging
specification. Package
implementers shall enforce this
requirement upon creation and
retrieval of the XML content
and shall treat the presence of
DTD declarations as an error.

8.14

M1.19

If the XML content contains the
Markup Compatibility
namespace, as described in
Part 5: “Markup Compatibility
and Extensibility”, it shall be
processed by the package
implementer to remove
Markup Compatibility elements
and attributes, ignorable
namespace declarations, and
ignored elements and
attributes before applying
subsequent validation rules.

8.14

91

Conformance Requirements

Rule

Reference

Package
Implementer

Format
Designer

Format
Producer

Format
Consumer

M1.20

XML content shall be valid
against the corresponding XSD
schema defined in this Open
Packaging specification. In
particular, the XML content
shall not contain elements or
attributes drawn from
namespaces that are not
explicitly defined in the
corresponding XSD unless the
XSD allows elements or
attributes drawn from any
namespace to be present in
particular locations in the XML
markup. Package implementers
shall enforce this requirement
upon creation and retrieval of
the XML content.

8.14

X

M1.21

XML content shall not contain
elements or attributes drawn
from “xml” or “xsi” namespaces
unless they are explicitly
defined in the XSD schema or
by other means described in
this Open Packaging
specification. Package
implementers shall enforce this
requirement upon creation and
retrieval of the XML content.

8.14

M1.22

Package implementers and
format designers shall not
create content types with
parameters for the package-
specific parts defined in this
Open Packaging specification
and shall treat the presence of
parameters in these content
types as an error.

Annex F

92

Conformance Requirements

Rule

Reference

Package
Implementer

Format
Designer

Format
Producer

Format

Consumer

M1.23

XML markup might contain
Unicode strings referencing
other parts as values of the
xsd:anyURI data type. Format
consumers shall convert these
Unicode strings to URlIs, as
defined in Annex A, “Resolving
Unicode Strings to Part
Names,” before resolving them
relative to the base URI of the
part containing the Unicode
string.

8.2.1

X

M1.24

Some types of content provide
a way to override the default
base URI by specifying a
different base in the content. In
the presence of one of these
overrides, format consumers
shall use the specified base URI
instead of the default.

8.2.1

M1.25

The Relationships part shall not
have relationships to any other
part. Package implementers
shall enforce this requirement
upon the attempt to create
such a relationship and shall
treat any such relationship as
invalid.

8.3.1

M1.26

The package implementer shall
require that every Relationship
element has an Id attribute, the
value of which is unique within
the Relationships part, and that
the Id type is xsd:ID, the value
of which conforms to the
naming restrictions for xsd:ID
as described in the W3C
Recommendation “XML
Schema Part 2: Datatypes.”

8.3.3

93

Conformance Requirements

Rule

Reference

Package
Implementer

Format
Designer

Format
Producer

Format
Consumer

M1.27

The package implementer shall
require the Type attribute to be
a URI that defines the role of
the relationship and the format
designer shall specify such a

Type.

8.3.3.2

X

X

M1.28

The package implementer shall
require the Target attribute to
be a URI reference pointing to a
target resource. The URI
reference shall be a URl ora
relative reference.

8.3.3.2

M1.29

When set to Internal, the
Target attribute shall be a
relative reference and that
reference is interpreted relative
to the “parent” part. For
package relationships, the
package implementer shall
resolve relative references in
the Target attribute against the
pack URI that identifies the
entire package resource.

8.3.3.2

M1.30

The package implementer shall
name relationship parts
according to the special
relationships part naming
convention and require that
parts with names that conform
to this naming convention have
the content type for a
Relationships part

8.34

94

Conformance Requirements

Rule

Reference

Package
Implementer

Format
Designer

Format
Producer

Format
Consumer

M1.31

Consumers shall process
relationship markup in a
manner that conforms to

Part 5: “Markup Compatibility
and Extensibility”. Producers
editing relationships based on
this version of the relationship
markup specification shall not
preserve any ignored content,
regardless of the presence of
any preservation attributes as
defined in Part 5: “Markup

Compatibility and Extensibility”.

8.3.5

X

X

M1.32

If a fragment identifier is
allowed in the Target attribute
of the Relationship element, a
package implementer shall not
resolve the URI to a scope less
than an entire part.

8.3.3.2

M1.33

A Unicode string representing a
URI can be passed to the
producer or consumer. The
producing or consuming
application shall convert the
Unicode string to a URL. If the
URI is a relative reference, the

the base URI of the part, which
is expressed using the pack
scheme, to the URI of the
referenced part.

application shall resolve it using

Annex A

M1.34

If a consumer converts the URI
back into an IRI, the conversion
shall be performed as specified
in §3.2 of RFC 3987.

A2

Table H-2. Package model optional requirements

ID

Rule

Reference

Package
Implementer

Format
Designer

Format
Producer

Format
Consumer

011

The package implementer might

allow a growth hint to be provided

by a producer.

8.1,8.1.3

X

95

Conformance Requirements

1D

Rule

Reference

Implementer

Package

Format
Designer

Format
Producer

Format
Consumer

01.2

Format designers might restrict the
usage of parameters for content
types.

8.1.2

X

013

The package implementer might
ignore the growth hint or adhere
only loosely to it when specifying
the physical mapping.

8.1.3

014

If the format designer permits it,
parts can contain Unicode strings
representing references to other
parts. If allowed by the format
designer, format producers can
create such parts and format
consumers shall consume them.

8.2.1

015

The package implementer might
allow a TargetMode to be provided
by a producer.

8.3.3.2

01l.6

A format designer might allow
fragment identifiers in the value of
the Target attribute of the
Relationship element.

8.3.3.2

01.7

Producers might generate
relationship markup that uses the
versioning and extensibility
mechanisms defined in Part 5:
“Markup Compatibility and
Extensibility” to incorporate
elements and attributes drawn from
other XML namespaces.

8.3.5

1 H.2

Physical Packages

2 Table H-3. Physical packages conformance requirements

ID

Rule

Reference

Package
Implementer

Format
Designer

Format
Producer

Format
Consumer

M2.1

The Content Types stream shall not
be mapped to a part by the package
implementer.

9.1.21

><A

96

Conformance Requirements

Rule

Reference

Package
Implementer

Format
Designer

Format
Producer

Format
Consumer

M2.2

The package implementer shall
define a physical package format
with a mapping for the required
components package, part name,

part content type and part contents.

9.11

X

M2.3

The package implementer shall
define a format mapping with a
mechanism for associating content
types with parts.

9.1.21

M2.4

The package implementer shall
require that the Content Types
stream contain one of the following
for every part in the package:

One matching Default element

One matching Override element
Both a matching Default element
and a matching Override element,
in which case the Override element
takes precedence.

9.1.2.2

M2.5

The package implementer shall
require that there not be more than
one Default element for any given
extension, and there not be more
than one Override element for any
given part name.

9.1.2.2

M2.6

The package implementer shall
require a non-empty extension in a
Default element. The package
implementer shall require a content
type in a Default element and the
format designer shall specify the
content type.

9.1.2.2.2

M2.7

The package implementer shall
require a content type and the
format designer shall specify the
content type in an Override
element. The package implementer
shall require a part name.

9.1.2.2.3

97

Conformance Requirements

Rule

Reference

Package
Implementer

Format
Designer

Format
Producer

Format
Consumer

M2.8

When adding a new partto a
package, the package implementer
shall ensure that a content type for
that part is specified in the Content
Types stream; the package
implementer shall perform the steps
described in §9.1.2.3.

9.1.2.3

XA

M2.9

To get the content type of a part,
the package implementer shall
perform the steps described

in §9.1.2.4.

9.1.24

M2.10

The package implementer shall not
use the versioning and extensibility
mechanisms defined in Part 5:
“Markup Compatibility and
Extensibility” to incorporate
elements and attributes drawn from
other XML-namespaces into the
Content Types stream markup.

9.1.25

M2.11

The package implementer shall not
mix interleaving and non-
interleaving for an individual part.

9.14

M2.12

The package implementer shall
compare prefix names as case-
insensitive ASCII strings.

9.1.3.1

M2.13

The package implementer shall
compare suffix names as case-
insensitive ASCII strings.

9.1.31

M2.14

The package implementer shall not
allow packages that contain
equivalent logical item names.

9.1.31

M2.15

The package implementer shall not
allow packages that contain logical
items with equivalent prefix names
and with equal piece numbers,
where piece numbers are treated as
integer decimal values.

9.1.31

M2.16

The package implementer shall not
map logical items to parts if the
logical item names violate the part
naming rules.

9.134

98

Conformance Requirements

Rule

Reference

Implementer

Package

Format
Designer

Format
Producer

Format
Consumer

M2.17

The package implementer shall

9.134

X

consider naming collisions within
the set of part names mapped from
logical item names to be an error.

M2.18

When interleaved, a package
implementer shall represent a part
as one or more pieces, using the
method described in §9.1.4.

9.2.1 x®

Notes:

A: Only relevant if using the content type mapping strategy specified in the Open Packaging Conventions.

B: Only relevant if supporting the interleaving strategy specified in the Open Packaging Conventions.

Table H-4. Physical packages recommendations

ID

Rule

Reference

Package
Implementer

Format
Designer

Format
Producer

Format

Consumer

S2.1

Some physical package
formats have a native
mechanism for representing
content types. For such
packages, the package
implementer should use the
native mechanism to map the
content type for a part.

9.1.2.1

X

S2.2

If no native method of
mapping a content type to a
part exists, the package
implementer should include a
specially-named XML stream
in the package called the
Content Types stream

9.1.21

99

Conformance Requirements

Rule

Reference

Package
Implementer

Format
Designer

Format
Producer

Format

Consumer

S2.3

If the package is intended for
streaming consumption:

The package implementer
should not allow Default
elements; as a consequence,
there should be one Override
element for each part in the
package.

The format producer should
write the Override elements
to the package so they appear
before the parts to which they
correspond, or in close
proximity to the part to which
they correspond.

9.1.2.2

XA

XA

S2.4

The package implementer
should use the mechanism
described in this Open
Packaging specification to
allow interleaving when
mapping to the physical
package for layout scenarios
that support streaming
consumption.

9.14

S2.5

The package implementer
should store pieces in their
natural order for optimal
efficiency.

9.14

Notes:

A: Only relevant if using the content type mapping strategy specified in the Open Packaging Conventions.

B: Only relevant if supporting the interleaving strategy specified in the Open Packaging Conventions.

Table H-5. Physical packages optional requirements

ID

Rule

Reference

Package
Implementer

Format
Designer

Format
Producer

Format
Consumer

021

The format designer specifies
whether that format might use
interleaving.

9.14

X

100

Conformance Requirements

1D

Rule

Reference

Package
Implementer

Format
Designer

Format
Producer

Format
Consumer

02.2

Optional. The package implementer
might provide a physical mapping for
a growth hint that might be specified
by a producer.

9.11

X

023

Package implementers might use the
common mapping solutions defined
in this Open Packaging specification.

9.1

024

Package producers can use pre-
defined Default elements to reduce
the number of Override elements on
a part, but are not required to do so.

9.1.2.2

025

The package implementer can define
Default content type mappings even
though no parts use them.

9.1.2.2

02.6

The package implementer might
create a physical package containing
interleaved parts and non-interleaved
parts.

9.14

02.7

The package implementer might
allow a package that contains logical
item names and complete sequences
of logical item names that cannot be
mapped to a part name because the
logical item name does not follow the
part naming grammar or the logical
item does not have an associated
content type.

9.134

Notes:

A: Only relevant if using the content type mapping strategy specified in the Open Packaging Conventions.

B: Only relevant if supporting the interleaving strategy specified in the Open Packaging Conventions.

H.3

The requirements in Table H-6, Table H-7, and

ZIP Physical Mapping

ID

Rule

Reference

Package
Implementer

Format
Designer

Format
Producer

Format
Consumer

101

Conformance Requirements

Rule

Reference

Package
Implementer

Format
Designer

Format
Producer

Format
Consumer

S3.2 | If a growth hint is used for an 10.2.7 X
interleaved part, the package
implementer should store the Extra
field containing the growth hint
padding with the item that represents

the first piece of the part.

Table J-8 are only relevant when mapping to the ZIP physical package format.

Table H-6. ZIP physical mapping conformance requirements

Format
Consumer

Format
Producer

Format
Designer

ID Rule Reference Package

Implementer

M3.1 | A package implementer shall storea | 9.2.1 X
non-interleaved part as a single ZIP

item.

M3.2 | ZIP item names are case-sensitive 9.2.2 X
ASCII strings. Package implementers
shall create ZIP item names that
conform to ZIP archive file name

grammar.

M3.3 | Package implementers shall create 9.2.2 x
item names that are unique within a

given archive.

M3.4 | To map part names to ZIP item 9.2.3 X
names the package implementer
shall perform, in order, the steps

described in §9.2.3.

M3.5 | The package implementer shallnot | 9.2.3 X
map a logical item name or
complete sequence of logical item
names sharing a common prefix to a
part name if the logical item prefix

has no corresponding content type.

M3.6 | To map ZIP item names to part 9.2.4 X
names, the package implementer
shall perform, in order, the steps

described in §9.2.4.

102

Conformance Requirements

Rule

Reference

Package
Implementer

Format
Designer

Format
Producer

Format
Consumer

M3.7

The package implementer shall map
all ZIP items to parts except MS-
DOSZIP items, as defined in the ZIP
specification, that are not MS-DOS
files.

9.2.5

X

M3.8

The package implementer shall map
all ZIP items to parts except MS-
DOSZIP items, as defined in the ZIP
specification, that are not MS-DOS
files. [M3.7]

[Note: The ZIP specification
specifies that ZIP items recognized
as MS-DOS files are those with a
“version made by” field and an
“external file attributes” field in the
“file header” record in the central
directory that have a value of 0. end
note]

In ZIP archives, the package
implementer shall not exceed
65,535 bytes for the combined
length of the item name, Extra field,
and Comment fields.

9.2.5

M3.9

ZIP-based packages shall not include
encryption as described in the ZIP
specification. Package implementers
shall enforce this restriction.

9.2.5

M3.10

Package implementers shall store
content type data in an item(s)
mapped to the logical item name
with the prefix_name equal to
“/[Content_Types].xml” or in the
interleaved case to the complete
sequence of logical item names with
that prefix_name.

9.2.6

M3.11

Package implementers shall not
map logical item name(s) mapped to
the Content Types stream in a ZIP
archive to a part name.

9.2.6

103

Conformance Requirements

Rule

Reference

Package
Implementer

Format
Designer

Format
Producer

Format
Consumer

M3.13

Several substantial conditions that
represent a package unfit for
streaming consumption may be
detected mid-processing by a
streaming package implementer,
described in §9.2.8. When any of
these conditions are detected, the
streaming package implementer
shall generate an error, regardless
of any processing that has already
taken place. Package implementers
shall not generate a package
containing any of these conditions
when generating a package
intended for streaming
consumption.

9.2.8

X

M3.14

For a ZIP archive to be a valid
physical layer for a package, the
package implementer shall ensure
that the ZIP archive holds equal
values in the appropriate fields of
every File Header within the Central
Directory and the corresponding
Local File Header and Data
Descriptor pair.

Annex C

M3.15

During consumption of a package, a
"Yes" value for a field in a table in
Annex C indicates a package
implementer shall support reading
the ZIP archive containing this
record or field, however, support
may mean ignoring.

Annex C

M3.16

During production of a package, a
“Yes” value for a field in a table in
Annex C indicates that the package
implementer shall write out this
record or field.

Annex C

M3.17

A “No” value for a field in a table in
Annex C indicates the package
implementer shall not use this
record or field during consumption
or production of packages.

Annex C

104

Conformance Requirements

Rule

Reference

Package
Implementer

Format
Designer

Format
Producer

Format
Consumer

M3.18

A “Partially, details below” value for
a record in a table in Annex C
indicates that the record contains
fields that might not be supported
by package implementers during
production or consumption. See the
details in the corresponding table to
determine requirements.

Annex C

X

M3.19

The value “Only used when needed”
associated with a record in a table in
Annex C indicates that the package
implementer shall use the record
only when needed to store data in
the ZIP archive.

Annex C

M3.20

The value “Only used when needed”
associated with a record in a table in
Annex C indicates that the package
implementer shall use the record
only when needed to store data in
the ZIP archive.

Annex C

M3.21

The package implementer shall
ensure that all 64-bit stream record
sizes and offsets have the high-
order bit =0.

Annex C

Notes:

A: Only relevant if supporting the interleaving strategy specified in the Open Packaging Conventions.

Table H-7. ZIP physical mapping recommendations

1D

Rule

Reference

Package
Implementer

Format
Designer

Format
Producer

Format
Consumer

S3.1

Package implementers should restrict
part naming to accommodate file
system limitations when naming
parts to be stored as ZIP items.

9.25

X

S3.2

If a growth hint is used for an
interleaved part, the package
implementer should store the Extra
field containing the growth hint
padding with the item that
represents the first piece of the part.

9.2.7

Table H-8. ZIP physical mapping optional requirements

105

Conformance Requirements

1D

Rule

Reference

Package
Implementer

Format
Designer

Format
Producer

Format
Consumer

03.1

A package implementer might
intentionally order the sequence of
ZIP items in the archive to enable an
efficient organization of the part data
in order to achieve correct and
optimal interleaving.

9.2.1

X

03.2

An “Optional” value for a record in a
table in Annex C indicates that
package implementers might write
this record during production.

Annex C

H.4

Core Properties

The requirements in Table H-9 are only relevant if using the core properties feature.

Table H-9. Core properties conformance requirements

1D

Rule

Reference

Package
Implementer

Format
Designer

Format
Producer

Format
Consumer

M4.1

The format designer shall specify
and the format producer shall
create at most one core properties
relationship for a package. A format
consumer shall consider more than
one core properties relationship for
a package to be an error. If present,
the relationship shall target the Core
Properties part.

10.2

X

X

X

M4.2

The format designer shall not
specify and the format producer
shall not create Core Properties that
use the Markup Compatibility
namespace as defined in Annex F,
“Standard Namespaces and Content
Types”. A format consumer shall
consider the use of the Markup
Compatibility namespace to be an

error.

10.3

106

Conformance Requirements

Rule

Reference

Package
Implementer

Format
Designer

Format
Producer

Format
Consumer

M4.3

Producers shall not create a
document element that contains
refinements to the Dublin Core
elements, except for the two
specified in the schema:
<dcterms:created> and
<dcterms:modified> Consumers
shall consider a document element
that violates this constraint to be an
error.

10.4

X

X

M4.4

Producers shall not create a
document element that contains the
xml:lang attribute. Consumers shall
consider a document element that
violates this constraint to be an
error.

10.4

M4.5

Producers shall not create a
document element that contains the
xsi:type attribute, except for a
<dcterms:created> or
<dcterms:modified> element where
the xsi:type attribute shall be
present and shall hold the value
dcterms:W3CDTF, where dcterms is
the namespace prefix of the Dublin
Core namespace. Consumers shall
consider a document element that
violates this constraint to be an
error.

10.4

H.5

Thumbnail

The requirements in Table H-10 and Table H-11 are only relevant if using the thumbnail feature.

Table H-10. Thumbnail conformance requirements

ID

Rule

Reference

Package
Implementer

Format
Designer

Format
Producer

Format
Consumer

M5.1

The format designer shall specify
thumbnail parts that are identified
by either a part relationship or a
package relationship. The producer
shall build the package accordingly.

111

X

X

Table H-11. Thumbnail optional requirements

107

Conformance Requirements

1D

Rule

Reference

Package
Implementer

Format
Designer

Format
Producer

Format
Consumer

05.1

The format designer might allow
images, called thumbnails, to be
used to help end-users identify parts
of a package or a package as a
whole. These images can be
generated by the producer and
stored as parts.

11

X

X

H.6

Digital Signatures

The requirements in Table H-12, Table H-13, and Table H-14 are only relevant if using the digital signatures

feature.

Table H-12. Digital Signatures conformance requirements

ID

Rule

Reference

Package
Implementer

Format
Designer

Format
Producer

Format
Consumer

Mé6.1

The package implementer shall
include only one Digital Signature
Origin part in a package and it shall
be targeted from the package root
using the well-defined relationship
type specified in Annex F,
“Standard Namespaces and
Content Types”.

12.21

X

M6.2

When creating the first Digital
Signature XML Signature part, the
package implementer shall create
the Digital Signature Origin part, if
it does not exist, in order to specify
a relationship to that Digital
Signature XML Signature part.

12.2.1

M6.3

The producer shall create Digital
Signature XML Signature parts that
have a relationship from the Digital
Signature Origin part and the
consumer shall use that
relationship to locate signature
information within the package.

12.2.1

108

Conformance Requirements

Rule

Reference

Package
Implementer

Format
Designer

Format
Producer

Format
Consumer

Mé6.4

If the certificate is represented as a
separate part within the package,
the producer shall target that
certificate from the appropriate
Digital Signature XML Signature
part by a Digital Signature
Certificate relationship as specified
in Annex F, “Standard Namespaces
and Content Types” and the
consumer shall use that
relationship to locate the
certificate.

12.2.3

X

X

M6.5

The producer shall create
Reference elements within a
SignedInfo element that reference
elements within the same
Signature element. The consumer
shall consider Reference elements
within a SignedInfo element that
reference any resources outside
the same Signature element to be
in error.

12.24.1

M6.6

The producer shall not create a
reference to a package-specific
Object element that contains a
transform other than a
canonicalization transform. The
consumer shall consider a
reference to a package-specific
Object element that contains a
transform other than a canonical
transform to be an error.

12.24.1

Mé6.7

The producer shall create one and
only one package-specific Object
element in the Signature element.
The consumer shall consider zero
or more than one package-specific
Object element in the Signature
element to be an error.

12.24.1

109

Conformance Requirements

Rule

Reference

Package
Implementer

Format
Designer

Format
Producer

Format
Consumer

M6.8

The producer shall create package-
specific Object elements that
contain exactly one Manifest
element and exactly one
SignatureProperties element.
[Note: This SignatureProperties
element can contain multiple
SignatureProperty elements. end
note] The consumer shall consider
package-specific Object elements
that contain other types of
elements to be an error.

12.24.1

X

X

M6.9

The producer shall create
Reference elements within a
Manifest element that reference
with their URI attribute only parts
within the package. The consumer
shall consider Reference elements
within a Manifest element that
reference resources outside the
package to be an error.

12.24.1

M6.10

The producer shall create relative
references to the local parts that
have query components that
specifies the part content type as
described in §12.2.4.6. The relative
reference excluding the query
component shall conform to the
part name grammar. The
consumer shall consider a relative
reference to a local part that has a
query component that incorrectly
specifies the part content type to
be an error.

12.24.1

110

Conformance Requirements

Rule

Reference

Package
Implementer

Format
Designer

Format
Producer

Format
Consumer

Mé6.11

The producer shall create
Reference elements with a query
component that specifies the
content type that matches the
content type of the referenced
part. The consumer shall consider
signature validation to fail if the
part content type compared in a
case-sensitive manner to the
content type specified in the query
component of the part reference
does not match.

12.24.1

X

X

M6.12

The producer shall not create
Reference elements within a
Manifest element that contain
transforms other than the
canonicalization transform and
relationships transform. The
consumer shall consider Reference
elements within a Manifest
element that contain transforms
other than the canonicalization
transform and relationships
transform to be in error.

12.24.1

M6.13

A producer that uses an optional
relationships transform shall follow
it by a canonicalization transform.
The consumer shall consider any
relationships transform that is not
followed by a canonicalization
transform to be an error.

12.24.1

111

Conformance Requirements

Rule

Reference

Package
Implementer

Format
Designer

Format
Producer

Format
Consumer

Mé6.14

The producer shall create exactly
one SignatureProperty element
with the Id attribute value set to
idSignatureTime. The Target
attribute value of this element
shall be either empty or contain a
fragment reference to the value of
the Id attribute of the root
Signature element. A
SignatureProperty element shall
contain exactly one
SignatureTime child element. The
consumer shall consider a
SignatureProperty element that
does not contain a SignatureTime
element or whose Target attribute
value is not empty or does not
contain a fragment reference the
Id attribute of the ancestor
Signature element to be in error.

12.24.1

X

X

M6.15

The producer shall create a
Signature element that contains
exactly one local-data, package-
specific Object element and zero
or more application-specific
Object elements. If a Signature
element violates this constraint, a
consumer shall consider this to be
an error.

12.24.2

M6.16

The producer shall create a
SignedInfo element that contains
exactly one reference to the
package-specific Object element.
The consumer shall consider it an
error if a SignedInfo element does
not contain a reference to the
package-specific Object element.

12.243

M6.17

Producers shall support DSA and
RSA algorithms to produce
signatures. Consumers shall
support DSA and RSA algorithms to
validate signatures.

12.2.4.5

112

Conformance Requirements

Rule

Reference

Package
Implementer

Format
Designer

Format
Producer

Format
Consumer

M6.18

The producer shall create a
Reference element within a
Manifest element with a URI
attribute and that attribute shall
contain a part name, without a
fragment identifier. The consumer
shall consider a Reference element
with a URI attribute that does not
contain a part name to be an error.

12.2.4.6

X

X

M6.19

The following transforms shall be
supported by producers and
consumers of packages with digital
signatures:

e XML Canonicalization
(c14n)

e XML Canonicalization with
Comments (c14n with
comments)

e Relationships transform
(package-specific)

Consumers validating signed
packages shall fail the validation if
other transforms are encountered.
Relationships transforms shall only
be supported by producers and
consumers when the Transform
element is a descendant element
of a Manifest element

12.2.4.7

M6.20

Producers shall create application-
specific Object elements that
contain XML-compliant data;
consumers shall treat data that is
not XML-compliant as an error.

12.2.4.14

M6.21

Producers and consumers shall use
the certificate embedded in the
Digital Signature XML Signature
part when it is specified.

12.2.4.15

113

Conformance Requirements

Rule

Reference

Package
Implementer

Format
Consumer

Format
Producer

Format
Designer

M6.22

The producer shall not create a
Manifest element that references
any data outside of the package.
The consumer shall consider a
Manifest element that references
data outside of the package to be
in error.

12.2.4.18

X X

M6.23

The producer shall create a
data/time format that conforms to
the syntax described in the W3C
Note "Date and Time Formats".
The consumer shall consider a
format that does not conform to
the syntax described in that WC3
note to be in error.

12.2.4.22

Mé6.24

The producer shall create a value
that conforms to the format
specified in the Format element.
The consumer shall consider a
value that does not conform to
that format to be in error.

12.2.4.23

M6.25

To sign a subset of relationships,
the producer shall use the
package-specific relationships
transform. The consumer shall use
the package-specific relationships
transform to validate the signature
when a subset of relationships are
signed.

12.2.4.25

M6.26

Producers shall specify a
canonicalization transform
immediately following a
relationships transform and
consumers that encounter a
relationships transform that is not
immediately followed by a
canonicalization transform shall
generate an error.

12.2.4.25

114

Conformance Requirements

ID Rule Reference Package Format Format Format
Implementer | Designer | Producer | Consumer

M6.27 | When applying a relationships 12.2.4.26 X X
transform for digital signatures,
the package implementer shall
remove all Relationship elements
that do not have eitheran Id value
that matches any Sourceld valueor
a Type value that matches any
SourceType value, among the
Sourceld and SourceType values
specified in the transform
definition. Producers and
consumers shall compare values as
case-sensitive Unicode strings.

M6.28 | When signing Object element 124 x
data, package implementers shall
follow the generic reference
creation algorithm described

in §3.1 of the W3C
Recommendation “XML-Signature
Syntax and Processing”.

M6.29 | When validating digital signatures, | 12.5 x
consumers shall verify the content
type and the digest contained in
each Reference descendant
element of the SignedInfo
element, and validate the
signature calculated using the
SignedInfo element.

M6.30 | The package implementer shall 12.5 X
compare the generated digest
value against the DigestValue
element in the Reference element
of the SignedInfo element.
Package implementers shall
consider references invalid if there
is any mismatch.

M6.31 | Streaming consumers that 12.5.1 X
maintain signatures shall be able to
cache the parts necessary for
detecting and processing
signatures.

115

Conformance Requirements

Rule

Reference

Package
Implementer

Format
Designer

Format
Producer

Format
Consumer

M6.32

The package implementer shall not
use the Markup Compatibility
namespace, as specified in Annex
F, “Standard Namespaces and
Content Types,” within the
package-specific Object element.
The package implementer shall
consider the use of the Markup
Compatibility namespace within
the package-specific Object
element to be an error.

12.6.2

X

M6.33

If an application allows for a single
part to contain information that
might not be fully understood by
all implementations, then the
format designer shall carefully
design the signing and verification
policies to account for the
possibility of different
implementations being used for
each action in the sequence of
content creation, content signing,
and signature verification.
Producers and consumers shall
account for this possibility in their
signing and verification processing.

12.6.2

M6.34

The following canonicalization
methods shall be supported by
producers and consumers of
packages with digital signatures:
XML Canonicalization (c14n)

XML Canonicalization with
Comments (c14n with comments)
Consumers validating signed
packages shall fail the validation if
other canonicalization methods are
encountered.

12.2.4.4

M6.35

A producer shall not specify more
than one relationship transform for
a particular relationships part. A
consumer shall treat the presence
of more than one relationship
transform for a particular
relationships part as an error.

12.2.4.25

116

1

Table H-13. Digital signatures recommendations

Conformance Requirements

ID

Rule

Reference

Package
Implementer

Format
Designer

Format
Producer

Format
Consumer

S6.1

The producer should not create any
content in the Digital Signature Origin
part itself.

12.2.1

X

56.2

Producers generating digital
signatures should not create Digital
Signature Certificate parts that are
not the target of at least one Digital
Signature Certificate relationship from
a Digital Signature XML Signature
part. In addition, producers should
remove a Digital Signature Certificate
part if removing the last Digital
Signature XML Signature part that has
a Digital Signature Certificate
relationship to it.

12.2.3

S6.3

For digital signatures, a producer
should apply a canonicalization
transform to the SignedInfo element
when it generates it, and a consumer
should apply the canonicalization
transform to the SignedInfo element
when validating it.

12.24.4

S6.4

Producers and consumers should also
use canonicalization transforms for
references to parts that hold XML
documents.

12.2.4.4

S6.5

The producer should only create
Reference elements within a
SignedInfo element that reference an
Object element.

12.24.1

Table H—14. Digital signatures optional requirements

ID

Rule

Reference

Package
Implementer

Format
Designer

Format
Producer

Format
Consumer

06.1

Format designers might allow a
package to include digital signatures
to enable consumers to validate the
integrity of the contents. The
producer might include the digital
signature when allowed by the
format designer.

12

X

X

117

Conformance Requirements

Rule

Reference

Package
Implementer

Format
Designer

Format
Producer

Format
Consumer

06.2

If there are no Digital Signature XML
Signature parts in the package, the
Digital Signature Origin part is
optional.

12.21

X

06.4

The producer might create zero or
more Digital Signature XML
Signature parts in a package.

12.2.2

06.5

Alternatively, the producer might
store the certificate as a separate
part in the package, might embed it
within the Digital Signature XML
Signature part itself, or might not
include it in the package if certificate
data is known or can be obtained
from a local or remote certificate
store.

12.2.3

06.6

The producer might sign the part
holding the certificate.

12.2.3

06.7

Producers might share Digital
Signature Certificate parts by using
the same certificate to create more
than one signature.

12.2.3

06.8

The format designer might permit
one or more application-specific
Object elements. If allowed by the
format designer, format producers
can create one or more application-
specific Object elements.

12.2.4.14

06.9

Format designers and producers
might not apply package-specific
restrictions regarding URIs and
Transform elements to application-
specific Object element.

12.2.4.14

06.10

Format designers might permit
producers to sign individual
relationships in a package or the
Relationships part as a whole.

12.2.4.25

118

1

2

Conformance Requirements

Rule

Reference

Package
Implementer

Format
Designer

Format
Producer

Format
Consumer

06.11

The package implementer might
create relationships XML that
contains content from several
namespaces, along with versioning
instructions as defined in Part 5:
“Markup Compatibility and
Extensibility”.

12.2.4.26

X

06.12

Format designers might specify an
application-specific package part
format that allows for the
embedding of versioned or
extended content that might not be
fully understood by all present and
future implementations. Producers
might create such embedded
versioned or extended content and
consumers might encounter such
content.

12.6.2

H.7

Pack URI

Table H-15. Pack URI conformance requirements

ID

Rule

Reference

Package

Implementer

Format
Designer

Format
Producer

Format
Consumer

M7.1

The authority component contains an
embedded URI that points to a
package. The package implementer
shall create an embedded URI that
meets the requirements defined in
RFC 3986 for a valid URI.

B.1

X

M7.2

The optional path component identifies
a particular part within the package.
The package implementer shall only
create path components that conform
to the part naming rules. When the
path component is missing, the
resource identified by the pack URI is
the package as a whole.

B.1

119

2

Conformance Requirements

Rule

Reference

Package

Implementer

Format
Designer

Format
Producer

Format
Consumer

M7.3

The package implementer shall
consider pack URIs equivalent if:

The scheme components are octet-by-
octet identical after they are both
converted to lowercase; and

The URIs, decoded as described in §B.2
from the authority components are
equivalent (the equivalency rules by
scheme, as per RFC 3986); and

The path components are equivalent
when compared as case-insensitive
ASCII strings.

B.4

X

M7.4

The package implementer shall not
create an authority component with an
unescaped colon (:) character.

B.1

Table H-16. Pack URI optional requirements

ID

Rule

Reference

Package
Implementer

Format
Designer

Format
Producer

Format
Consumer

07.1

Consumer applications, based on the
obsolete URI specification RFC 2396,
might tolerate the presence of an
unescaped colon character in an
authority component.

B.1

X

End of informative text.

120

10

11

12

13

14
15

16
17

18
19

20
21

22

23

24

25

26

27

Bibliography

Annex 1. Bibliography

The bibliography is informative.

The following documents are useful references for implementers and users of this Open Packaging specification,
in addition to the normative references:

ISO/IEC Directives Part 2, Rules for the structure and drafting of International Standards, Fourth edition, 2001,
ISBN 92-67-01070-0.

The Unicode Standard, Version 3.0, by the Unicode Consortium; Addison-Wesley Publishing Co, ISBN 0-201-
61633-5, February 2000. The latest version can be found at the Unicode Consortium's web site,
www.unicode.org, at this writing.

Dublin Core Element Set v1.1. http://purl.org/dc/elements/1.1/

Dublin Core Terms Namespace. http://purl.org/dc/terms/

Extensible Markup Language (XML) 1.0 (Third Edition), W3C Recommendation, 04 February 2004.
Namespaces in XML 1.1, W3C Recommendation, 4 February 2004.

RFC 2616 Hypertext Transfer Protocol—HTTP/1.1, The Internet Society, Berners-Lee, T., R. Fielding, H. Frystyk, J.
Gettys, P. Leach, L. Masinter, and J. Mogul, 1999, http://www.rfc-editor.org.

RFC 3986 Uniform Resource Identifier (URI): Generic Syntax, The Internet Society, Berners-Lee, T., R. Fielding,
and L. Masinter, 2005, http://www.rfc-editor.org.

RFC 3987 Internationalized Resource Identifiers (IRIs), The Internet Society, Duerst, M. and M. Suignard, 2005,
http://www.rfc-editor.org.

RFC 4234 Augmented BNF for Syntax Specifications: ABNF, The Internet Society, Crocker, D., (editor), 2005,
http://www.rfc-editor.org.

W3C NOTE 19980827, Date and Time Formats, Wicksteed, Charles, and Misha Wolf, 1997,
http://www.w3.0rg/TR/1998/NOTE-datetime-19980827.

XML Base, W3C Recommendation, 27 June 2001.
XML Path Language (XPath), Version 1.0, W3C Recommendation, 16 November 1999.
XML Schema Part 1: Structures, W3C Recommendation, 28 October 2004.

XML Schema Part 2: Datatypes, W3C Recommendation, 28 October 2004.

121

http://purl.org/dc/elements/1.1/
http://purl.org/dc/terms/

Bibliography

1 XML-Signature Syntax and Processing, W3C Recommendation, 12 February 2002.
2 ZIP File Format Specification, Version 6.2.1, PKWARE Inc., 2005.

3 End of informative text.

122

77

78

O 0 N o b

11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40

Annex]. Index

This annex is informative.

access
[Yo | SR UUUURN 85
NEtWOrKeduvvveeeeeiiiieee e 85
ACCESS StYIE oo, 3, 22, 86
AUENONILY v 66
DASE URI..cccotieeeeeee ettt 3
DENAVION ..., 3
implementation-definedcccceiveiieeiiiciencnns 3
UNSPECIFIEd wuviiiiiiiec e 3
communication styleccccevvveeeeeieniccnnnneen. 3, 22,87
(001 4 1 V1 4 1 1=] R 3,85
(oo 1 =T o) A A o 1 I PPPPRPPE 3,13
(oo 1 =Y) A Ao 1L PP 1
content types Streameevveveeeeeeeeeeeeeeeeeeenenennns 3,23
(oo] (=3 o] fo] o 1=] o =T3P 1
AOVICE ottt e e e e eeeeeeeeeees 3,85
digital signature........cccoeeeeeiiie e, 1
direct access consUMPLIoONccccveeeeecieeeecciieeeenns 86
format CoNSUMENoocociiieieiee e 3
format designer........ccoccveee e 3
format producer.......ccoccveeiiciiiei e 3
fragment ... 66
rowth hint....c.ooeiiiii e 3
IEC... See International Electrotechnical Commission
interleaved ordering......cccccveeeveiieeeccciee e, 4
International Electrotechnical Commission 8
[aYOUL SLYIE weveeeeiieeeee e 4,22, 86
[0CAl ACCESS ..onvvieiieieiiieiee ettt 4
logical item NamMeccevevveciiiiiccee e, 4,28
NEtWOrked aCCESS ..ccouviiriiiriir ettt 4
ordering
interleaved........ooovvveeeeiiiiiii e, 22,87
SIMPIE et 22,86
PACK URI.ccceeeee e 4,11
PACKAEE ..cc i 1,4, 11
package implementer.......ccccceeeieccciiieeee e, 4
package model........oocciiiiieei i, 1,4

End of informative text.

a1
42
43
a4
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76

Index

package relationship.......ccccoevveeiiniieniniiiee e, 4,16
PANT it e e e 1,4, 11
PArt NAME .. 4,11
PALN e 66
(016 o - Y SO USSR 66
pct-encoded characters.......cccceeeeeccciiiieeeeeee e 66
physical MapPINgccceevveeeieiee e 1
physical model........cccevvieiiiiiieie e, 4,622
physical package format.......ccccceeciiiiiiiienennnen, 4,622
PIECE ittt 4,30
1] o1 PPPPPPPPR 5,22,85
o] oo [V Lol =] oSS 5, 85
(e[S L] VU PP 66
FANAOM GCCESS ..vvvvvrvrvirrrrrererereeeeereeeererereeeeeereeeeee 5, 87
relationship ..o, 5,16
relationship partccccoveeeeciiee e, 16
relationships part......cccoceeeeciee e 5
relative referenCeovveveeeeeec e, 3
reserved Character......cccoovveeeeeeiiiicciieeeee e 66
FESOUICE 1uuuueeeeeeiretneeeeeeererssnnieeeeeereresnnaeeeeesssesnnnnns 66
SCHEME. e 66
SEEMENT oo 66
sequential deliverycccoocveeeieciieeiccieee e 5,87
SIgNAtUre POlICY...uiiiiciiiiieiiee e 5
SIMPle Ordering......ccccuveeeeciiie e 5
simultaneous creation and consumption........... 5, 86
SEFBAM e 511
streaming consuMpPtion.......ccoeecuvvveeeeeerenrcninneen. 5, 86
streaming creation........ccccceevevvcciiieeeee e eesccineeen 5, 86
SUD-delimMS...ccciiiieeicee e 66
thumbnailcooooiiiii e, 1,5, 41, 108
unreserved characters.......cccocvvevevevereeerereeeeenennnnnn, 66
well-known part........cccoieeei e, 5
L= 1 1A N 31
ZIP archive......cccccccii 5
A | =] 0 o TR 5,31

123

Ice Open
XM

Ecma TC45
Final Draft

Part 3: Primer

October 2006

3

O 00 N o wu

11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45

Table of Contents

0T = Vo T o Xi
Yo T Lot T o Xii
Y oo o = 1
2. Introduction to WordprocessingIMIL........cceeuuuiiiiiiiiiinemnnnsiiiiiiiinessmmsssiimiimmissssssssisiimmesssssssssssssssessssssssses 2
A Y o] 1= PP PPPPPPT PP 2
2.2 BasSiC DOCUMENT SEIUCTUIEttt e e e e e et e e e e e e e e e et e e e e e s e snnnrneeeas 2
2.3 IMAiN DOCUMENT STOMY iiiiiiiiiiiiiiiiieieieteeeee ettt ettt et e e ettt e e et eaeaeaessaeaenseennnnnnnnns 3
20 704 NN B o TolU 13 o V=Y oY ol 7= Yol €4 o T Lo L3RR 3
2.4 Paragraphs and RiCh FOIrMattiNgcueiiiiiiiei ettt et e et e e e ette e e e e bae e e e eabteeeesntaeaesans 4
D N R - 1 =Y -4 =T o] o PR 4
B A ¥ | o [PP PP PPTOPPPPTN 5

P . B ¥ [o [@o] o 1< o | AP PP OPPTPPPPPTN 7
2.4.4 FOrmatting ProPerty VAlUEScocuueii ittt ettt e ettt e ettt e e e e tte e e e e ate e e e enataeeeenstaeaeenrenesennnens 8

D T -1 o1 13PN 9
28 70 R [0 o Yo ¥ T o T o T PSR SS 9
DT A -1 o1 [o o oY= o = PSPPI 10
DT T -1 o1 [G o P PPPP 11
2.5.4 Table ROWS @Nd CelIS.....uuiiiiiiiiiiiiiie ettt ettt et e e e bee e e et ae e e e abee e e esabeeeeesareeeeennrees 12
PN T -1 o1 I I 1Yo T U PP 14
2.5.6 FIXEA Width TableS ..ccc it e e et e e e ae e e e sab e e e e sabeee e ssabaeeeennrees 15
DT A YU o] o 1 =1 o] 113 PP PR 15
2.5.8 ComMPIeX Table EXAMPIE ..ciiiiiiiieiiiie ettt ettt et e e et e e e e ette e e st ae e e eeabaeeeeabaeeeesabeeeeesnseeeeennsens 16
2.5.9 Vertically MErged Cells.......ouiiii ittt et sre e e e bae e e e sabe e e e e sabee e e ssabeeeeennnees 17

D ST OV L o] o 4 1\, - [(0 o SR 19
B TNt R o o - T 1= £ PPPPPPPRt 19
2.6.2 CUSTOM XIVIL IMIarKUP .. .cviieeeiiec ettt ettt e et e e et e e e e ata e e e e abae e e eeataea e e abeeeeesnseeeeeanseeeeennsens 21
2.6.3 Structured DOCUMENT TAZS .ueveiieiiiiiiiiiieeeeeieecittiere e e e e s esitttreeeeessessabasareeeeesssssnssanesesessasssssensneeeessnnnnnns 23

D A Y=o 1 [o] o OO P P UPPPPP PP 26
N Y- ot o o T o 0] 1= =Pt 27

D B Y- Yoi u (oY Y = T T | S 28

D T 4V (=TS 29
D T N 4 V] (=T 2= Y o PP 29
DR T A 4 V] (N D =Y 1Y o T L PP 29
2.8.3 Paragraph STYIESo e e e et e e e e ae e e e naraeeeenrees 30
PR N O o F- [- Yot £ Y a7 [T RSP PRPR 32

D TR T] o] (= Te Y 8] L= PSPPI 33
2.8.6 NUMDBEIING SEYIES ..vveiiiiiiie ettt e e e e e e et e e e e s tt e e e s eabaee e e abaeeeesabaeaeesasteeeennseeesennsees 36
DR T A - o1 I 1Y =TSP 36
2.8.8 Default Document Paragraph and Character Propertiesccccocveeeiccieecccciee e 40
2.8.9 StYIE INNEIITANCE ..eviiiiiiiie ettt e et e e et e e e e stte e e s st e e e e e abaeeeesabeeeeesabeeeeennreeeeennnees 40

D 201 L T V] (=02 o] o] [oF- | oY o VUSSP 41

D 20 B R I Y 0] Y PR 42
PR B oo 11| &SP U PP P PO PPPTPPPP 43
D28 TN A o o Y 2= Y =Y ool Y 43

O 00 N O U A W N B

A A B D D D HSH DA DWWWWWW W WWWNNDNDNDNDNDNDNNDNNDNR R R R R P RB RB R R
00 N O AW N P O O O N O UV B W N P O O OGN O U A WN P O O WO NO UV A W N =R O

DR A oY o = L= =T o Yol I NV =SSR 43

PR R T Y o] o] = {0 e TU L O o = ot =T PP 44
DR IR S o A 11 o] [P SRR 44
2.9.5 FONt SUDSTITULION DAt@ ..uiiiiiiiiiieiiiiie ettt e s e bee e s e bee e e s b e e e s sabeeeessabeeeeennnees 45
2.9.6 FONt EMBEAING c..eviiiiiiiiee et e e et e e e st e e e e b e e e e s sabee e e snabeeeesnaraeesennees 45
PR B A I o 1=T0 V=N o T £ PSSR 46
D2 0 N 1W T 0] oY= 1o Y-SR 46
2 15t R N 1W T 0] o 1= gV - o OSSPSR 47
2.10.2 NUMDBEIING DEfINITIONS ...eeiiiiiiiii et bre e e et ae e e e rabe e e e e sabeeeeesabaeeeennnees 47
2.10.3 Abstract NUMbBering DefinitioNS.......ccocciiii it e et e e e earae e e e enrae e s ennrees 47
2.10.4 Numbering Definition INSTANCES.......ccicciiii et e e ere e e e rbae e e e earee e e e earaee e eenrees 50
2.10.5 Applying NUMbEring to Paragraphsuceiiciiiei ettt e e ee e e rvee e e e earee e e e eabae e s e nrees 51
2.10.6 The COMPIELE STOMY.ciiiiiiiee ettt e e e e e e e et e e e eebae e e eeabaeeeeeabaeeeenabeeeeesnsteeeeansaeesennsens 54
2.10.7 NUMDBEIING STYIES ..veeiiiiiie ettt ettt et e e e et e e e e et e e e e e abae e e eeabaeeeeeabaeaeesabeeeeesnseeeeeanseneesnnsens 55
2.10.8 Referencing NUMDBEING STYIESoviiiieiee et e e ee e e e bee e e e earee e s enraee e eennees 56
D R o T=F- o [T ST o Lo I o Yo] PSR 59
D St R o =T o [Tl o Y PSPPSR 60
D N A o T} (= gl o | A PP PP PP PPPPPPPPPPPPPPPPPPPOt 60
D B & =Y T [T S T o To I oo | =] PP 60
D V[0 AT o] [Y=Y o o PP 63
D T o oo Y VA o [Lo [T o o Tl oo Yo T PP 64
P28 2 ool 4 Lo T =T3K- [[o I = g o [o] 13RSI 64
D 0 R o T} g Lo (= =Y o PP PP PP PP P PP PPPPPPPPPPPPPPPOt 65
D A o To [o To 1 < - T o SRR 65
P2 7055 T o To 14 Vo) £ Y3E- [o I S g o [oo =130 66
2.12.4 Footnote and ENANOTE TYPES ..eeiiciiieeieiiie e eeitee ettt e e ettt e e e et e e e e etee e e e e bae e e eeabaeaeesnbeeeeesaseeesennreeeeennsens 67
2.12.5 Footnote and ENANOtE REFEIENCEuiiiiiie ettt s e e st e e ebee e s naeeenees 71
DA e T € (o 13- | V2 0 Lo Yol ¥ 4 1 1= o Y A S 72
P AN o [T =) A o] L3OO PP UPPPPPOPOP 73
20 I 55t R [0 o Yo [0 T o Yo H PRSPPI 73
D2 A [o1 11 Y0\ o T o) - [[74
2.14.3 Cross-STructure ANNOTAtIONS ..ccci ittt ettt e e e e e e s ee et e e e e s sanrebeeeeeeesenannne 74
D o o T oY= o Y Y gV o) - T o PPt 75
2. 145 COMMEBNTS ...eeeiieeiee ettt e e e e e ettt et e e e e e ettt e e e e e e e e n s be et e e e e e e e as e b et eeeeeeeaannbbeteeeeeeaaannrebeeeaeesaanannne 76
2.14.6 COMMEBNTS PAlT.... ittt ettt e e e e e e ettt e e e e e e s b ebe et e e e e e e e nnbsreeeeeeeeaannreneeeaeesaaannnne 78
2.14.7 ROVISIONS..ciiiuitieiiiitteeeettee e ettt e e sttt e e sttt e e sttt e e s bt e e e s aubeee e e aabe e e e e abaeessnbaeeeenbaeeeeareeeesnreeessnraneeennres 78
2.14.8 BOOKMAIKS....viietiierieeiiie ettt ettt ste e ettt sb e e st e e sate e sbeeesabeesab e e sabeeesabeesabeesbbeesabee e bbeesataeeabaeenabeeeares 79
2.14.9 RANGE PEIMISSIONS tiiiiiiiiiiiiiiiiteeeiiiiiiireeeeeesessittteeeeeesssstbreeeeeessssssssartaaeeesssssssssaeeaessssssssssssaeeesssnnsnns 80
2.14.10 SPelling @Nd GramMaAr.....ccccccieieiiieeeceitee e ecite e e eetee e e e eteee e s steeeeesbaeeeesabaeeeessbaeesessbaeeeesseeesssseeesennsens 81
D R Y T 1Y =T o OSSR 81
2.15.1 Mail Merge, WordprocessingML, and Hosting ApplicatioNnS........ccceeeveiieiiicciieeecciee e 82
2.15.2 Connecting Documents to an External Data SOUICEcccoccieieiciiee et 82
2.15.3 Populating Merged Documents with External Data........cccccccveiiieiieiiiiiee e 83
P LSRN Y1 u] o = PP PPPPPPPPPPPPPPPPPPPPPRE 85
2.16.1 DOCUMENT SETLINGS .eeteiiiiiiiiiiiiiiititittitttetttttttetetetteeeetettttetttttttettttttattttttttttttttttttttettm..t..........—.—.—.... 85
2.16.2 Compatibility SELHINGSeevriiiiie e e e e e e e e e e e e rrareeaeeeeeannes 86
B T T VAV oY JY=Y o [TSRS 87
D A 1T o R Y Ve I AV o Y=Y o 17]SSP 87

36

38
39

41
42
43
44
45
46
47

0 A R 1= [£ EUUE 87
D A & V] T=Y g 11 0] PSSP 88

D R Y 1Yol =] | T aT=Y e YU] o 1ok PSR 88
D T A) q A = 10) = TP PP UPPTPPPPRN 88
D T U] o o Lo Yol U 13 0 1= o) £ PP 88
2.18.3 IMporting EXtErNal CONTENT.....cciiiiiie ettt eee e e e ebre e e e ete e e e esabae e e esareeeeesaraeeeennsees 89
2.18.4 Roundtripping AILErnate CONTENTccicciiii it ere e e e rae e e e rbae e e e enree e e esnraeeeennees 90
3. Introduction to SPreadsh@etML..........ccceeciiiieiiiiiecerireeer e eerreesessrenssessennssessennssessennssessennnsessennnnsnns 93
0 A V1Yo T 4T To]SSPSRt 93
01 0 R O 17T V11 93
3.1.2 Minimum WOrkbooK SCENAIMIO ..cciiiiiiiiiciiiee et e e e e e e e s sbee e e e sntaeeeeans 93
3.1.3 Example WOrkbook Propertiesc.ueiiieciiiiiiiiiee ettt sttt e e st e e s svae e e s sbeee e s svaaeaeeans 93
0t T 1 1oAY T Y T o O UUR PP 95
3.1.5 WOIKBOOKVIEW ettt ettt e e et e e e s e bt e e e e ebteeesebteeeeebteeesensaaeaeeseneananns 95
B 11X £ RS 96
3.2.1 Minimum WOrKShEET SCENAIIO ..cc.eviieicciiiee ettt et e e et e e e e e ette e e e ebte e e s ebaeeeeentaeaeaans 96
I A -1 0] o] (I 1= AR 96
0 T [TcY o oY o 1= SRS 97
A R o [TCY D -1 - USRS 98
3.2.5 SUPPOITING FEATUIES ...uuueiiiiitiiiiitiitttt s nsnannnn 102
N S T o [Tl o oY o T=T o U 103
A o 11T d D | = W =] | =1 o] =TSSR 103
20 - T o 17U 103
0 B - | DU UUTU T PSRR 104
3.2.10 SUPPOItING SNEET FEATUIES ... uiiii it ecitee ettt et e e e e st e e s ara e e e eabreeessaseeeesnsaeeessnnseeeen 106
3,211 DefiN@A NAMESeiiiiiiiiieeetee ettt ettt ettt e sttt et esabe e s bte e sabeessbbeesabeesabaeesabeesabeesbaeesabeesnseean 106

R I A YU o] o1 1T S O O OO T OO OO PO U ST POPOTOPRPRUPPROP 106
I R T |V =Y Yo I]| LSRR 107
0 A 0o [o [oY o =1 Il =l g s g - A [T SRS 107
e T o F= T4 =T I d g 10T = -1 o] TSP 108
3.3.1 OVEIVIEW wetiiiiiiiiiiiiiteie e e e e sttt et e e s sssiab et e e e e s s e s abtbe et eeees s s ssbtaaaeeesssssssbasaaeeesssassssrtsaeeeesssssssreaaeeeeses 108
3.3.2 File ArCRITECIUIE ettt e sttt e e st e et e e s abe e sabeeesabeesabeesbaeesabeesnneean 109
I T T - o 0 o] (R ad - 11 T 1= G SRS 110
o T A 11 (VT o =Y 4T o ISR 110
0 70 T I o T RSP S 110
e T ST o =14 =To] 1 g V= = o] =TS 117
I T A =Y | I =Y o L= RS UR 118
S - T - [o] o] [T R el T =D USSR 119
S S T 1| (U Ty o =1 o o TSRS 119
I 0 (O T o =Y =T B 4 oY= - o) 1RSSR 119
S 1= o] =TSSR 122
S R O 17T V11 122
B S 1[I g o 11 =] PSR 122
S T - 1 0 o] (S - o] LU 123
S R 1| (VT o = o o TSRS 123
345 ThE SNEEE XIML....eiiiiiiieiieectee ettt ettt sttt ettt e st e s bt e e s be e s bt e e sabeesabaeesabeesabaesnbaeesabeesnssean 124
34,6 THE TADIE XML ..eeiiiiiiieieeeiee ettt ettt et e st bt e e st e e s bt e e sabeesabaeesabeesabaesabaeesabaesnssees 124

O 00 N O U A W N B

A A B D D D HSH DA DWWWWWW W WWWNNDNDNDNDNDNDNNDNNDNR R R R R P RB RB R R
00 N O AW N P O O O N O UV B W N P O O OGN O U A WN P O O WO NO UV A W N =R O

I I Or-1 (o0 | =] oY s T O o =Y [TR 125

0= T B @ 1V T o V11 TSP 125
I T A b - 1o 0] o] (=PRSS 125
T I 0o 1 ¢ 0 4 1= 1 £ RON 129
ST R @ 1Y T o V1L USRS 129
T A 5 -1 1 o] o (=R 129
e T S 1 <NV o] o1 (=T {0 | IR 130
S S I o 1O {1V, | IR SURPT 130
S T 1 YU 1 o o] RSO TT 132
ST I @] 010 0 1= o} £ RN 132
B A 1Y/ LSRR 133
TN R @ 1T o V1= L U UUTN 133
A R S 1 =N N o] o1 (=T £ | <SR 133
3.7.3 Organization in the StYIES Part.......c.eei ittt e e e e rr e e e e satr e e e enbaeeesnnaeee s 134
R 3 -1 o 0] o (=T USSR 137
3.8 WOIKSNEET IMIETAUATA ...evvviiiiiiiiiiiiiiiiiiiiiieeeittete et eee e e eeaeeeaeeeeee e s aa e s es s s e s e s s s e s e sesssassasssssssassessssssssassssensnssennnnns 149
R T B @ 1V <1 o V11 ORI 149
3.8.2 File Architecture — RelationShips........ciiiciiiiiiiiiie et e e e s e e e ssanaeee s 151
S 0 T - 11 0 o] (=SSR 151
3.9 Pivot Table, Pivot Cache, and COMMON TYPESvviiiiiriieeiciieeeecitee e estte e e eereee e e sbeee s ssbeeeeesreeeessareeesennsens 164
3.0.1 FRATUIE OVEIVIEW ceuuueieiiieeeitiiee ettt e e e e e e et etteeeeeeeseeesa b e eeeesesessbaaaaseeesesssssannseeessssssrannaeeeeesenssnnn 164
e T A o1 LN Y ol a Y1 =Tt (U1 <N 166
3.9.3 Example - Native With RANZE SOUICEuuviiiiciiie ettt e e e ee e srae e e ssnaaee s 167
3.10 Shared WoOrKDOOK REVISIONS......uuuuuiiiiiiiiitiiiretetertteeeeerereresesereereeeereeeseaerererererer—.—e.—.ereeeereerrrrrrr..... 184
0 0 T @ 1V7=Y V7 = Y R 184
0 0 T o MY VN YA o T S 184
I O IR T 3 =T o o L= USSR 185
I A O LU 1= o - | o L= PR 194
0 Nt O @ 1Y T o V=L U 194
3.11.2 Wb QUEIY EXAMPIE. i ittt e e et e e ettt e e e et e e e e e eata e e e e asaeeeeassaeeeenssaeesansseeesansrneans 194
o R T = [Yool oY% [4 o [194
I O R 1 Vol ol T =Y o] [=T Vo] LTSS 195
N A 3 =] o = I 0o Y Y [Tt 4[] o R 196
0 0t R @ 1Y T o V=L U 196
S0 77 @ 1 AN o 0] o] V=To1 1 T o VRN 197
3.12.3 PiVOL XIMIL fragmeNnt...cccc eiiee ettt ettt e e st e e st e e e et e e e e tae e e snsseeeeasaaeesnsaeaesannseeenn 198
01 1072 S o oY =T o 1 {1 | 198
N I =T I O LU= YU 199
N A ST @ LU= oV = o1 [SRR 200
20 7 A o] o] o T=Tot d o] 4 1041/ | PPN 200
3.12.8 UNUSEA CONNECTION cuveiiiiiiictiiteiee e e ettt e e e e eeeebre et e e eeesetaaeeeeeeeeesassbasaeesesesesassrasseeseessansssrrsreeeeeenn 201
3.02.9 ODBC .uuuitiiiiieeeee ettt ettt eeect e e e e e e e et e e e e et e a b b a— et e e eeeaa bbb ——ateeeeaa bbb aatateeeeaaabraaraaaeeeeaaaarraraaaeeenn 201
0 700 0 I o o] o =Tt f o 4 10 1Y/ PPN 201
3Ld2.11 SQL..ciiiiiiiieiieee ettt e eeee e e e e e e e e e e e e e e e e b ———aeeeeeaa bbb ——taeeeeaaa bbb ataaeeeeaaatbraartaaeeeeaanarraraaaeeenn 201
0 0t A 0o o] o =Tt f o 4 1041/ | PPN 203
01 107201 1 T 1= 4 [Yoo o 203
0 700 A 0o o o =Tt f [o] 4 1Y/ SN 204
3.0 EXEEINAI LINKS.eurtuiriieriiiiiiiieiiieteretetetererereeereeerererererererereeeeearseasssaessnsnnns 205

Vi

O 00 N O U A W N B

W W NN NNNRNNNNNDRR R R B B B P B o
B O VW 00 N O 1 B W N kP O W B N O Ul A W N B O

32

34
35
36
37
38
39
40
41
42
43
44
45
46
47

4,

0 1 20 A @ Y=Y VA T=L 205

I I T A o T 0 o 10| T o [4T o [USRS 205
0t 1 . T o 1T oY/ | USSR 205
3.13.4 WOrkbook REIQtIONSHIPS ..vvviiiiiiieiiiiiii et e e s sre e e e s sare e e e ssnsreeesnnnneee s 207
3.13.5 Supporting Workbook Cache (Cell C2)uuiiiiiiiieeie ettt srae e sre e e eane s 208
I B e =] ¢ o Tl T | (=Y |) DTSR 209
3.13.7 Supporting Workbook Cache (Cell B2)ccoccuiieeeiieieeeceee ettt et e e e ee e s tae e e seaneea s 209
3.13.8 EXEEINAl LINK (CEIIB2) ..ottt ettt et ettt e e e e e e e eaabaaee e e e e e seessbaereeseeesenssbesereaeeean 210
N TR T o Y o 1= T 0 S == [4T o LS 211
I T8 O BTV o T o] =T =] 41/ | U 211
I 700 I 0= - T T o o USSR 211
I A Vo oY] Lol D oY 1< T F=T o Tl =SS 212
00 0 R O V7= T Y11 212
3.14.2 File Architecture - Relationshipsoooiiiii it e e et ae e e s eanaeee s 212
I O T 3 - Yo] o L= USSR 212
3.15 CUSTOM XIMIL IMIAPPDINES . cttttieiiiiiiittteeeeeseiiiittteeeeessstbtteteeeesssasassbeeteeeesssasssstaaeeesssssssssstaaaeeesssssssssenaeeessns 214
01 = 700 R O 17T V11 214
3.15.2 File Architecture - Relationshipsciiciiiiiicciiie e e e s saaeee s 215
N TR T 0o T [o=Y o (U= | 1Y, o o 1] USRS 216
N R0 A - T 0 o (=SSR 216
N S o V1= TS ORISR 222
00 % R 1o f o Yo [T 1 To] [P UR R TUR 222
0 0 A 010 o 1) =1 o | £ J PP PPPPTTPPPRN 222
0 S TRC T O o 1= =1 o 222
N L S 0| I < =T =T ool TSRS 224
00 T8 T 0 o Vot of [0 3 225
00 T8 T 1= [0 = 225
3.16.7 TYPES ANA VAIUEBS.....eiiiieiiiee ettt e e ettt e e et e e e et e e e e e ttaeeeesataee e e ssaeeeeassaesesanssaeesansseeesannsneans 225
N TR T L 4 o YRV =Y (V1= 225
N S I B =1 T3 T I T L= SRS 226
3.16.10 XML REPIrESENTATION .. .uuuutiiuiiiiiiiitiitttt s annen 228
Introduction to PresentationIVILcccuiiieiiiieiiiiiiiiiiienireierreistnnseseesesensssensesenssssnssssnessssnsssensensnnans 229
ot R = T] ol PP PP P PP PPPPRTOPPPRRTNN 229
s 0t A Vo 1 o Yo ¥ Tt o o TR 229
o N - 7= T ol U 4 | YU 230
4.1.3 The Presentation ODJECTcoccciiiiieiiiiee ettt e e st e e e e tte e e e et e e e s eataeeeenbeeeeenateeeeenrens 232
A.1.4 Presentation PrOPerties ... i nan 238
4.2 Slides, Masters, Layouts, and PIaCceholders.........cooiiiiiiie it ecere e e e e e re e e 242
L 0 N V' 1 4 o Yo U Tt o o SRR 242
A |V, =) (-] o 242
4.2.3 Presentation SHAEuiiiiii it e e e e e e e e e e e e e e e brrrr e e e e e e e eanrrraeees 245
A N \ V[0 1= L3l - = 246
e T [o LN I 1Yo YU £ TSP SPP 247
N T o o o0 =T] £ 247
0 A 1 14 e Yo (¥ ot [o S TSP PPP 247
4.3.2 FUNCLIONAI OVEIVIEW....eeiiiiiiiee ettt ettt et e et e e et e e e ta e e e s bbe e e e s abaeeeensbaeeeeabaeeeennseeesennsens 248
e . T o 0 o1 o V=T oL YU oo gl X1 TP 248

Vi

O 00 N O U A W N B

e =
N B O

13

14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47

T S 00 T 0 1Y 0 1 1]) o X N 249

L N o113 F=) 4 o] o ST 249
T V' | o Y [o o T 249
Ny [Te T I = 2 o] o TN 250
A.4.3 TIMEINE OVOIVIBW. ..t asnnsnnnnsnnnnn 251
L S 1 0 V=Y [T o V=N o o 1y { ¥ ot f o] o OO URRROSR 252
445 ANIMAtION BERAVIOIS ..uveeiiiii ittt et e e e e e e ee et e e e e e eessababeeeeeeeeeesssraeees 254
O I o] o To [A oY g ¥ |l 2 o o 1T 4 [T PR 256
L Ny N = 10 11 e I 0 11 o = o] o USROS 257

T [To L3V g Yol o T g1 1= 1 o o PSP 258
L% N 11 4 o Yo 8 ot o] o HP TSRS 258
N A [o [W T o Yo =Y AT) (o PR 258
Introduction t0 DrawinGIVIL.........ccceuiiiieeiiiieieciireieeerreneneesrenesesrenessssrenssssssensssssrensssssrenssssseensssssnsnnnes 261

LR A - 7- 1] o3RS 261
LS00 ¢ A 1Y o Yo [T 1 o o IS 261
L0 N @ 1Y 1T o V1= L SRS 261
L T - 7= 1 Tl 11 ' 1=] £ 261
L S 0o 1 Lo] SR 261
LT R S @0 o o o T= Y] o111 Y27 262
L B ST o ol {=Te 0= 41V R 262

S I YU o [To J=T g Ve VA e 1Yo TR 262
L3000 R 1Y f o Yo [T 1 o] o U 262
L R SV o T o o = N O Y= V=1 262
5.2.3 DraWiNGML SYNTaX...uuiiiiiiiiiiiiiieee ettt e e e e s s ettt e e e e s s s saabataeeeesssasabbtaaaeeesesanatbaaaaeeeeens 263

5.3 SEYIES wvoieeeeeeeeeeeee e es e ee et e e et e et e e e et ee et e et et e e et e e e e et et e e st en et en e et e e ee e e e e ee e eesees et eneereeeneees 264
Lo 200 A 12 f o Yo [[1 o] o IPUU ORI 264
5.3.2 Shared SEYIE SREEL.....coo e e e et ee e et b e e e s aaaeee s 265

L D« U UOURRUPPUPP 278
Lo 5t R 1o o o Yo [T 1 o o PSSR 278
Lo A © VT oV 11 279
LR T = To o A WA I S o] o1 =T o =SSP 281

LT T I~] L= PP 289
Lo 00 A 12 f o Yo [[1 o] o IPUR SRR 289
LI T A -1 o LT Y L= U 289
LT T -1 o1 L= B T=Y T Yoo o I 296

Lo ST B o 1= 3PP 300
Lo 70 R 1Y d g Yo [¥ o1 o o JER R 300
LR . T 300
Lo T Y TSRS 306

5.7 Coordinate Systems and TransformMationsccueeiiciiie it e e et e e e e e e e e 310
Lo 2% TR 1Y 4 o Yo [¥ o1 o o JERRR 310
Lo N @o To o [T g = o VA =] o o USSR 310
5.7.3 Shape TransfOrmMationscccciiieiiiiiiie et ee e e et e et e e e e ratr e e e eataeeeesataeeeenssaeesnnsaaeesannseeenn 310
I Y R €1 o 10T o B I - 101y o] 0 10 F= Y o [SRS 313
L T N 11 o = = T 1y o) 4 =] o LU 317
5.7.6 TransformMation IMatriCeS......uuuueiiiiiiieciiiiieiee e eeceireeee e e e e eeetrreeeeeeeeessabaaeeeeeeesessssrasreesesessnsssrrsreeeeeens 318

5.8 Shape Properties and EffECESuiiiiiiiii e e 319

viii

O 00 N O U A W N B

WN NN RNNNRNNNDNERR R B B B B B op o
O VW ® N O U B W N B O W W N O U1 M W N B O

31

5.8.1 (Y4 e Ye [Lot o] o IR RUUURTR 319

LIRS 0 A 0o] [o T Y, [o o 1] RS 319
LTS 0 T 0o Fo T o = g 1) {0 o o -SSRSO 325
Lo T 1| C USRI 327
5.8.5 LINE PrOPEITIES «..eeeiieeiee ettt ettt e e e e s ettt e e e e e e s aabebeeeeeessasnsbbaeeeeeeeeannnreaaeeeeeann 332
TR I I i i ot £ PRUTUPPP 334
5.9 Shape Definitions and ALtrIDULESc..eeii it e et e e e ta e e e e erae e e e eabeee e ennes 338
LT T8 A 1o o Yo [U1 4o [P PPRUPUPPRR 338
R A I o TN e Yo T e [Ta T | (o V] T8 U 339
5.9.3 SPeCifying @ PreSet SHAPE ...cccuviiiieiiie ettt et e e e e et e et e e e ratb e e e e nrra e e eanraee s 340
5.9.4 Specifying @ CUSTOM SHAPE . ..uuiiiiiiie ettt et e e e e e e e s ata e e e e sateeeesntaeeesannneeen 342
o O I o T o <P PPP PP 347
LT 0 I8 1o o Yo [U o1 4o [RPN 347
LT O Y o 1Yol | Y/ oY= I = T] (ol o ot U o <R 347
5.10.3 Attaching Properties t0 this PICLUIEc.eeiieciiii ettt e e et e e s eaaeee s 349
5.10.4 Transforming this PICtUIEcccuiii ittt e e e e e e s aaa e e e snbbeeessnnneee s 350
5.11 WordproCesSiNgIML DIaWiNgccuueiiieciieeeiiiieeeeiiteeeseiteeesstaeeesssteeessssbaeessssbeeessssseasssssseessssseeesssnseesssnnsens 352
Lo B 0 R @ o [Tt Y ol Vo [V-SSRSO 352
o I A Y ¢ ALV =T o o1 o = PP PPPPRRPPTTPPPTO 353
5.12 SPreadsh@etIML DIaWiNgciiiiiiiiiiiiiieeeiiiee e settee e sttt e s e stee e s s satee e e s sbaeeessabeeesesabeeeesssseeeeesnseeesesnsenesennsens 355
Lo 72 R 1o o e Yo ¥ ot o IS 355
L0 1020 A © VT V11 355
5.12.3 WOIKSNEET DIraWINES .eeeieviieeiiiiiieiiiiete e ettt e e sttt e e et e e e st te e e e s ata e e e sataeeesssaeeesssseeeesssaeesansseeesannseesn 355
LT I T o = o £ PP 358
L0 I 700 R O 17T V11 358
5.13.2 XIMIL OVEIVIEW «..eeeeeieieiee ettt ettt e e e e s ettt e e e e e e e bebe et e e e e e e e anbeateeeeeeeaaansreeteeeeeeeannnnneeeeeeeaann 368
LT TR T 3 - Yo o o L= 369
LT A @ o =T ol T = 1YLV o Y- S PR 372
Lo 2 5t R 1o o o Yo [W ot i o [PPSR P PP 372
5.14.2 OVEIVIEW .eiiiiiiiiietteee ettt e e e ettt e e e e s e bttt e e e e e e e bbbttt e e e e e e e nnbebteeeeeeaa e nsraeeeeeesesannnnneeeaaeeaans 373
LT O B o =T ol T =1V oY= £ SRS 373
L0 R T I 1 =T =4 = o 1P 374
LT 70 R 1o o o Yo [¥ ot o I PSR OPOP PP 374
5.15.2 ElEMENT PrOPEITY STneeiiiiceiieie ettt ettt e e et e e e ettt e e e et e e e e eata e e e e aaaeeeeessseeeeassaeesansseeesanssneens 375
LT T T 1 = T 1Y/ e Yo 1] PP 377
5.15.4 COlOr TraNSTOIMIS . ciiiiiiiiieeiee et stte ettt sbe et sit e sttt e sabeesabeesbteesabeeesbbeesabeesabaeesabeesaseesnstaesabeeessenn 381
LT T T Y (N D 1= T o o o USRS 387
I N I - 1Yo TV | O OO T T O OO P PR RSPPPOTOTRRUPPTOP 390
INtrodUCtion tO VIMIL.....iiiiiiiieuiiiiiiiiiiiiinnisiieiiiiinesssssssisisiiinesssmsssssssssmmesssssssssssssnsesssssssssssssssessnssssssssssnns 416
L% A VoY o Yo [W ot i o 1R RPN 416
Lo T=T o TN = 1= o =Y o SRR 416
L0720 R C T o 0= 417
6.2.2 PlACBIMENT..ci ittt ettt ettt e sat e e sttt e sttt e s te e s bt e e st e e e ba e e sabe e e baeenabeesabaeebaeesabeeenareen 419
B.2.3 FOIMAtEiNG ettt s 422
L3 © i o 1T S T OO S PSR PPPOTOTORUPPPROTN 422
(o3 T € o 1T o 31 =1 173 0 =T o} PSR 424
(o Y o F=Y o L=l Y/ o T =1 =T 4 =T o | PSR 424

AW N R

O 0 N O

11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33

34

35
36
37
38
39
40
41
42
43
44
45
46

7.

8.

6.5 VML Usage in the Office Open Document FOrmMat.......cccveeieecciiiiiiie ettt e e e e eerrreee e 425

Lo T8 A 0 4 1 ToT=Y A o) o T o =SS 425
6.5.2 SpreadsheetML COMMENTSuiiiiiiiieeeciiee et ee et e e e e ere e e s ate e e e e sabee e e ssasaeaeesaseeeessseeeesannseeeen 427
6.5.3 WordprocessingIMIL TEXEDOXuuiiiiciiiiiiiiiieieiiiee ettt sttt e s et e e e et e e e s sabee e e ssaseeeessnseeeessseeeesnnnseeeen 428
INtroduction t0 Shared IVILSccceeiiiiiieiiiiiiiiiiiieeiniieeeieniessssresesssniessssssiessssssrenssssssensssssssnsssssssnnsas 431
2% R Y/ - | IO USRS 431
% T R Yol ol =T A] =Y o1 SRS 431
2 A - 7T ©]] =T RS 432
% T T = To T o [Tl 2 o Y 0] =T o USROS 432
0 S - To) @ 1 o] =Y ot SRR 432
% T T 1= 110 0 11 =Y SRS 433
7.1.6 EQUAtiON Array OBJECE .. ittt et e e e e st e e e st e e e et r e e e e e ae e s ntreeesnnreee s 433
/2 B A o - Vor o o [0] o =Tt AU 434
2% R - T SV o Tt d oY YWY o] o] AV @ o T=T o RS 434
2 e B € o 10 o N @ o F=T - Yot =T g @] o [Tt (SRS 434
7.1.10 UpPpPer and LOWET LIMIESeeiieiiiieiciiiie et ettt e et e ettt e e e ette e e e e eata e e e easaeeesasaeeeenseseesanseeeesannsneens 435
% R N R \V - 1 Q]] =T o R 435
2 B TV @ 1 o] 1T o U 436
% T R T o =T 01] 0 @ o [T AU 436
% S Vo [Tor=1 @] o =Tt F U 437
7.1.15 Scripts (Superscript, Subscript, SubSuperscript, PreSubSuperscript)cccceeeveeeeccieeeecieee e, 437
B A Y, (=) - Vo - | - SRS 438
A R \V oY = Yo o = Y ad o T o 1T A [T 439
7.2.2 COTE PrOPEITIES «uuueeiieeieiieeiiittee e ettt e e e e s ettt e e e e s s sttt et e e e e e s ssasabaaaaeeeessasssrtaaaeeessssnssnseaaeeessnns 440
A 2 T e =T [o [Tl o o) o 1T o A =TSSR 440
7. 2.4 CUSTOM PrOPEITIES. . uiiiii it ittt e e ettt e e e e s ettt e e e s s s sabbbeeeeeessssssbataaeeesssasssrtaaaeeesssnsssssenaaeessens 440
VR T V- | G T 1o A Y/ o1 SO PP PP 440
7.3 CUSTOM XML DATA .. ittt e e st e e e s s s et e e e e s s e s rree e e e e e e eas 440
2 = 11 o1 [ToT={ -1] 0 V7SR 441
N R 1Yo =Y o Yo 1U ol Y-SR 441
742 Child ElEmMENTS.c.ueiiiiii ettt ettt ettt ettt e et e st e s bt e e s be e s bt e e sabeesabaeesabeesabeesbaeesabeesnnnean 442
3 T YU 1 d o [o | O O O T T T O OO T SRS PPPOTOTRRUPPPTOP 444
7.4.4 LCID, GUID, Tag, and REFOIUEI...ccccuiiieieiiie ettt ettt e e e e e et e e e st ae e e ssnnreee s 445
MISCEIIANEOUS TOPICS ..iiiiierueuniiiiiiiiiiraniiisiiiiieemssnssisisiieeesssmsssssisiirersssssssssssstnsessssssssssssssssssasssssssssanns 447
S0 A 0o o Y=Y [[T =3 PP 448
S 0 A 1 0 Y Y=o [[=To [- 1ol TSRS 448
S A 1 0 Y Y=o [0 [=To [@] o} =Tt £SO 448
8.1.3 Embeddings in a WordprocessingML DOCUMENTcccccuiiieiiiiieeeiiieeceriree e ecire e e eeesvreeessaaeee s 449
8.1.4 Embeddings in a SpreadsheetML DOCUMENTccccuiiiiiiiiie ettt e e e e e s saaeee s 451
8.1.5 Embeddings in a PresentationML DOCUMENT.......ccccuviiiiiiiiiieiiiie et eiee e e ee e et e e ssaaeee s 452
8.2 FULUIE EXLENSIDIIItY . .uueiiiieee e e e e e e et e e e e e e e bt b e e e e e e e s e e nnrrraneaaeaaean 453
< 0700 R =T ¢ o Y3V [0 -V SRR 453
8.2.2 What is Future EXteNSIDility?....ccee e a e 454
8.2.3 Future Extensibility REQUIFEMENTSuuiiiieie e e e e e e e e e e srera e e e e e e e an 454
8.2.4 Future Extensibility CONSLIUCES ...ccciieiiiiieee s 455

Scope

Foreword

This multi-part Standard deals with Office Open XML Format-related technology, and consists of the following
parts:

e Part 1: "Fundamentals"

e Part 2: "Open Packaging Conventions"

e Part 3: "Primer"(this document)

e Part 4: "Markup Language Reference"

e Part 5: "Markup Compatibility and Extensibility"

Xi

Scope

Introduction

This Part is one piece of a specification that describes a family of XML schemas, collectively called Office Open
XML, which define the XML vocabularies for word-processing, spreadsheet, and presentation documents, as
well as the packaging of documents that conform to these schemas.

The goal is to enable the implementation of the Office Open XML formats by the widest set of tools and
platforms, fostering interoperability across office productivity applications and line-of-business systems, as
well as to support and strengthen document archival and preservation, all in a way that is fully compatible with
the large existing investments in Microsoft Office documents.

Xii

10

Scope

1. Scope

This Part contains a detailed introduction to the following Office Open XML topics:

e WordprocessingML
e SpreadsheetML

e PresentationML

e DrawingML

e VML

e Various shared MLs

The organization of this Part is much the same as its corresponding reference Part, Part 4, and is intended as a
gentle introduction to Part 4.

10
11

12

13
14

15
16
17
18
19

20

21
22

23

24

Introduction to WordprocessingML

2. Introduction to WordprocessingML

This clause is informative.

This clause contains a detailed introduction to the structure of a WordprocessingML document.

2.1 Stories

A WordprocessingML document is composed of a collection of stories. Each story represents a distinct region
of text within the document. The following kinds of region exist: comment (§2.14.5), endnote (§2.12.2),
footer (§2.11.2), footnote (§2.12.1), frame, glossary document (§2.13), header (§2.11.1), main story (§2.2),
subdocument (§2.18.2), and text box (§2.18.1).

With one exception (a glossary document), all stories in a document utilize a common set of properties that
determine the presentation of the contents of each story. These properties include font information, style
definitions, numbering definitions, and document settings.

2.2 Basic Document Structure

The main document story of the simplest WordprocessingML document consists of the following XML
elements:

e document — The root element for a WordprocessingML's main document part, which defines the
main document story.

e body — The container for the collection of block-level structures that comprise the main story.

e p — Aparagraph.

e r—Arun.

e t— Arange of text.

A run is a region of text in a story with a common set of properties. The text in a WordprocessingML document
must be contained within one or more runs. A paragraph is a collection of one or more runs that is displayed
as a unit. A run must be contained within a paragraph.

Consider the following Main Document XML for a simple WordprocessingML document:

O 00 N OO s~ W N e

=
o

11

12
13
14
15

16

17

18

19

20

21

22

23
24

25

26
27
28
29
30
31
32

33
34

Introduction to WordprocessingML

<?xml version="1.0"?>
<w:document xmlns:w="..">
<w:body>
<W:p>
<W:r>
<w:t>Hello, world.</w:t>
</wir>
</w:p>
</w:body>
</w:document>

2.3 Main Document Story

The contents of the main document story—the only story that is required in a valid WordprocessingML
document—are encapsulated within the body element. The content of the main document body is a collection
of block-level structures, which are those WordprocessingML elements that can contain and/or be sibling
elements with a WordprocessingML paragraph.

Within the document body, the valid set of block level content is:

e Paragraphs

e Tables

e Custom markup (custom XML, structured document tags)

e Section properties

e Annotations (comments, revision markers, range permission markers)
e Alternate format chunks

Each of these block-level content constructs (the 'building blocks' of WordprocessingML) is defined in the
following subclauses.

2.3.1 Document Backgrounds

As well as containing a body, a document element can also contain the definition of the document's
background via the background element and its contents. This background applies to all printed pages within
this document. A document background in WordprocessingML can have a single color, as well as the
application of various drawing effects such as color gradient or pattern, and a tiled or stretched image. All
background information in a WordprocessingML document is stored using the Vector Markup Language (VML)
syntax. The single exception to this is the background color, which is stored natively in WordprocessingML
using the bgColor attribute.

Consider a simple background in WordprocessingML, which consists of a single color with a gradient fill
applied:

N o o A wWwN

10

11

12
13
14
15

16
17

34
35
36
37

Introduction to WordprocessingML

<w:background w:bgColor="5C83B4">
<v:background id="_x0000_s1025" o:bwmode="white" fillcolor="#5c83b4
[3204] o:targetscreensize="800,600">
<v:fill color2="fill darken(118) method="linear sigma" focus="100%"
type="gradient"/>
</v:background>
</w:bgPict>

The background consists of two components: a background fill color of RGB value 5C83B4, and the background
gradient stored as a VML transformation.

2.4 Paragraphs and Rich Formatting

2.4.1 Paragraphs

The most basic unit of block-level content within a WordprocessingML document, paragraphs are stored using
the p element. A paragraph defines a distinct division of content that begins on a new line. A paragraph can
contain three pieces of information: optional paragraph properties, inline content (typically runs), and a set of
optional revision IDs used to compare the content of two documents.

Consider the paragraph fragment "The quick brown fox jumped ..." which is centered on a paragraph. As all the
text in the paragraph is emphasized using italics, in the XML, the contents of the paragraph will have the
justify-center property, and each run within the paragraph (as well as the run properties for the paragraph
mark) stores the italics property; for example:

<wW:p>
<W:pPr>
<w:jc w:val="center"/>
<W:rPr>
<w:i/>
</w:rPr>
</w:pPr>
<w:ir>
<W:rPr>
<w:i/>
</w:rPr>
<w:t>The quick brown fox jumped..</w:t>
</w:ir>
</wip>

Notice that each run specifies the character formatting information for its contents, and the paragraph
specifies the paragraph level formatting (the center-justification). It is also notable that since leading and
trailing whitespace is not normally significant in XML, some runs require a designating specifying that their
whitespace is significant via the xml:space element.

10

11
12
13
14
15
16
17

18

19
20
21
22
23
24
25

26
27

28
29

30
31

32
33

Introduction to WordprocessingML

A paragraph's properties are specified via the pPr element. Some examples of paragraph properties are
alignment, border, hyphenation override, indentation, line spacing, shading, text direction, and widow/orphan
control.

It should also be noted that a pPr element may contain a set of run properties within a rPr element — these
properties are applied to the run which contains the glyph which represents the paragraph mark and not the
entire paragraph.

2.4.2 Runs

The next level of the document hierarchy is the run, which defines a region of text with a common set of
properties, represented by the r element. An r element allows the producer to combine breaks, styles, or
formatting properties, applying the same information to all the parts of the run.

Just as a paragraph can have properties, so too can a run. All of the elements inside an r element have their
properties controlled by a corresponding optional rPr run properties element, which must be the first child of
the r element. In turn, the rPr element is a container for a set of property elements that are applied to the rest
of the children of the r element. The elements inside the rPr container element allow the consumer to control
whether the text in the following t elements is bold, underlined, or visible, for example. Some examples of run
properties are bold, border, character style, color, font, font size, italic, kerning, disable spelling/grammar
check, shading, small caps, strikethrough, text direction, and underline.

Consider the following run within a WordprocessingML document:

<W:r>
<W:rPr>
<w:b/>
<w:i/>
</w:rPr>
<w:t>quick</w:t>
</w:ir>

The run specifies two formatting properties in its run contents: bold and italic. These properties are therefore
applied to all content within this run.

A producer can break a run into an arbitrary number of smaller runs, provided each smaller run uses the same
set of properties, without changing the content of the document.

Consider the content "only one word is emphasized" in a WordprocessingML document. An efficient producer
could choose to output this content using two runs, as follows:

<W:r>
<w:t xml:space="preserve">only one word is </w:t>
</w:r>

a U A~ W N

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25

26
27

28
29
30
31

32

33
34
35

36
37

Introduction to WordprocessingML

<W:r>
<W:rPr>
<w:i/>
<wW:rPr>
<w:t>emphasized</w:t>
</w:r>

However, a less efficient producer might use four runs, as follows:

<W:r>
<w:t>only one</w:t>
</w:r>
<W:ir>
<w:t xml:space="preserve"> word is </w:t>
</w:r>
<W:r>
<wW:rPr>
<w:i/>
<W:rPr>
<w:t>empha</w:t>
</wir>
<W:r>
<W:rPr>
<w:i/>
<W:rPr>
<w:t>sized</w:t>
</w:ir>

Although the latter example uses four runs rather than two, the net run information applied to each region of
text is identical, and both are equally valid

Of course, a run might need to be broken. For example, the properties of only some the text in that run are
changed, requiring the changed part to be put into its own run. Another example involves the insertion of
some sort of marker into the middle of an existing run. That requires the run be broken into two with the
marker inserted between them.

The following run contains two sentences:

<W:ir>
<w:t>Hello, world. How are you, today?</w:t>
</wir>

If the first two words are bolded in these sentences, the run will need to be broken into two runs in order to
store the formatting, as follows:

Jany

O 00 N OO U~ W N

10
11

12

13
14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29
30
31
32
33
34

35

36

37

<W:r>
<W:rPr>

<w:b/>

</W:rPr>

<w:t xml:space="preserve">Hello, world. </w:t>

</W:r>
TH

<w:t>How are you, today?</w:t>

</W:r>

Introduction to WordprocessingML

Apart from text, a run can also contain numerous kinds of textual content (§2.4.3) A run can also contain a set

of revision IDs used for document "merge and compare".

2.4.3

Run Content

The lowest level of this hierarchy is run content, that content that can be stored within a single runin a

document. In WordprocessingML, the types of run content include:

2.4.3.1

Text

Deleted text

Soft line breaks
Field codes

Deleted field codes
Footnote/endnote reference marks
Simple fields

Page numbers

Tabs

Ruby text
DrawingML content
Embedded objects
Pictures

Text

The most common run content is the t element, which is the container for the text that makes up the

document's content. A t element can contain an arbitrary amount of text, up to and including the entire

document's contents. However, typically, long runs of text are broken up into paragraphs and strings of text

having different formats, or are interrupted by line breaks, graphics, tables, and other items. A t element must

be enclosed within an r element; i.e., a run of text. An r element can contain multiple t elements, interspersed

among other elements.

Aside from the t element, there are three types of text in WordprocessingML:

delText - Deleted text
instrText - Field codes

10
11

12

13

14

15
16
17
18
19
20

21

22
23
24

25
26
27
28
29

30
31
32

Introduction to WordprocessingML

e dellnstrText - Deleted field codes

These four types of text are defined using unique elements in WordprocessingML so that simple consumers
can determine the text of the document simply by grabbing the contents of the t node, without needing to
check where revisions start and end, etc. to determine the state of the text contents.

It is also notable that these are the only elements in a WordprocessingML document's main document part
that can contain a XML text node.

244 Formatting Property Values

Most of the children of an rPr or pPr element have a single val attribute that is limited to a specific set of
values. For example, the b (bold) element causes the text that follows it to be bold when the b element has a
val attribute with value on. If the val attribute isn't present for the b element, it defaults to "on". Therefore,
<w:b/> is equivalentto <w:b w:val="on"/>.

Aside from the default values, which are documented with each element, this is particularly important when
specifying the difference between omitting a formatting property and explicitly turning it off.

For example, consider the following run:

<W:ir>
<W:rPr>
<w:b w:val="off"/>
</W:rPr>
<w:t xml:space="preserve">Hello, world. </w:t>
</wir>

This run explicitly declares that the bold property is turned off for this text, as opposed to the following run:

<W:r>
<w:t xml:space="preserve">Hello, world. </w:t>
</wir>

This run says nothing about the bold property. This distinction is particularly important when dealing with
content that is formatting using styles - if the content was not contained in a styled paragraph, both would be
identical. However, in the case where the paragraph is styled, the former would never be bold regardless of
the style information, whereas the latter would express the bold property as set by the style, since it's
omission of the bold property means "whatever the underlying formatting is".

Some elements have val attributes that offer a richer set of choices than on and off; the u (underline) element
is one such element. In this case, the same rules apply, the omission of the property simply means use the
underlying properties.

10

11

12

13

14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35

Introduction to WordprocessingML

2.5 Tables

Another type of block-level content in WordprocessingML, A table is a set of paragraphs (and other block-level
content) arranged in rows and columns.

2.5.1 Introduction
Tables in WordprocessingML are defined via the tbl element, which is analogous to the HTML <table> tag.

The table element specifies the location of a table present in the document.

A tbl element has two elements that define its properties: tblPr, which defines the set of table-wide properties
(such as style and width), and tblGrid, which defines the grid layout of the table. A tbl element can also
contain an arbitrary non-zero number of rows, where each row is specified with a tr element. Each tr element
can contain an arbitrary non-zero number of cells, where each cell is specified with a tc element.

Consider an empty one-cell table (i.e.,; a table with one row, one column) and 1 point borders on all sides:

This table is represented by the following WordprocessingML:

<w:tbl>
<w:tblPr>
<w:tblW w:w="5000" w:type="pct"/>
<w:tblBorders>
<w:top w:val="single" w:sz="4" w:space="0" w:color="auto"/>
<w:left w:val="single" w:sz="4 w:space="0" w:color="auto"/>
<w:bottom w:val="single" w:sz="4" w:space="0" w:color="auto"/>
<w:right w:val="single" w:sz="4" w:space="0" w:color="auto"/>
</w:tblBorders>
</w:tblPr>
<w:tblGrid>
<w:gridCol w:w="10296"/>
</w:tblGrid>
<w:tr>
<w:te>
<w:tcPr>
<w:tchW w:w="0" w:type="auto"/>
</w:tcPr>
<w:p/>
</w:te>
</witr>
</w:tbl>

10
11

12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29

31
32
33
34
35

Introduction to WordprocessingML

This table specifies table-wide properties of 100% of page width (tbIW's type attribute specifies how the width

value in the w attribute shall be interpreted—pct specifies a measurement of fiftieths of a percent) and the
set of table borders (tblBorders), the table grid which defines a set of shared vertical edges within the table

(discussed later), and a single row.

2.5.2 Table Properties

The tblPr element defines table-wide properties, properties which are applied to each row and cell in the

table. The complete set of table-wide properties can be found on the definition for the tblPr element.

Consider the fo

llowing simple WordprocessingML table:

This table defin
properties. The

<w:tbl>

<w:tblP
<w:tb
<w:tb
<W:

<W:

<W:

<W:

<W:

<W:
</w:t
</w:tbl
<w:tblG

</w:tbl

<w:tr>

</witr>
</w:tbl>

In this example, the tbIW element defines the total width of the table, which, in this case, is set to a type of

es outside and inside table borders, etc; and is set to 100% of page width - both table-wide
resulting table is represented by the following WordprocessingML.:

r>
IN w:w="0" w:type="auto"/>
1Borders>

top w:val="single" w:sz="4" w:space="0" w:color="auto"/>
left w:val="single" w:sz="4 w:space="0" w:color="auto"/>
bottom w:val="single" w:sz="4" w:space="0" w:color="auto"/>
right w:val="single" w:sz="4" w:space="0" w:color="auto"/>
insideH w:val="single" w:sz="4" w:space="0" w:color="auto"/>
insideV w:val="single" w:sz="4" w:space="0" w:color="auto"/>
blBorders>

Pr>

rid>

Grid>

auto, which specifies that the table should be sized to fit its contents. The tblBorders element specifies each

of the table's borders, and specifies a one point border on the top, left, bottom, right and inside horizontal and

vertical border. The table-wide properties can be overwritten on an individual row basis by specifying table

property overrides within the table row properties.

10

10
11

12
13
14

15

16

17
18

19

20
21

22
23
24
25

Introduction to WordprocessingML

2.5.3 Table Grid

The tblGrid element defines the grid for the table. All columns in the table (including the space before and
after a row) reference this grid. Each gridCol defines a single grid column within the table’s layout, which is
used to define the presence of a vertical line within the table. A tblGrid element can contain an arbitrary
number of gridCol elements, where each gridCol element represents one grid column in the table and defines
a single grid entry. When cells are laid out within this table, as discussed below, all cells will be forced to snap
the shared column edges defined by this grid.

Returning to the earlier 'one-cell empty table' example, the table has one column with a width of 10,296
twentieths of a point. This measurement (twentieths of a point, or twips) is frequently used in
WordprocessingML, and translates to 1/1440th of an inch (one-twentieth of a point, which is itself 1/72nd of
aninch):.

<w:tblGrid>
<w:gridCol w:w="10296"/>
</w:tblGrid>

Consider the following, more complex table that has two rows and two columns; the columns are not aligned:

This table is represented by laying out the cells on a table grid consisting of three table grid columns, each grid
column representing a logical vertical column in the table:

The dashed lines represent the virtual vertical continuations of each table grid column, and the resulting table
grid is represented as the following in WordprocessingML:

<w:tblGrid>
<w:gridCol w:w="2952"/>
<w:gridCol w:w="4416"/>
<w:gridCol w:w="1488"/>
</w:tblGrid>

11

O 00 N OO s~ W N e

WON N NN RN NNNNNR R P B R B P P B
©O VW 00 N O U B W N B O VW 0 N O 1 B W N L O

31
32
33
34

35

36
37

38
39
40

Introduction to WordprocessingML

<w:tr>
<w:te>
<w:tcPr>
<w:tcW w:w="7368" w:type="dxa"/>
<w:gridSpan w:val="2"/>
</w:tcPr>
<w:p/>
</w:te>
<w:te>
<w:tcPr>
<w:tcW w:w="1488" w:type="dxa"/>
</w:tcPr>
<w:p/>
</w:tc>
</w:tr>
<w:tr>
<w:te>
<w:tcPr>
<w:tcW w:w="2952" w:type="dxa"/>
</w:tcPr>
<w:p/>
</wite>
<w:te>
<w:tcPr>
<w:tcW w:w="5904" w:type="dxa"/>
<w:gridSpan w:val="2"/>
</w:tcPr>
<w:p/>
</w:ite>
</witr>

Notice that each of the cells which do not span one grid column (i.e., span two adjacent vertical lines) must
specify this fact by supplying a gridSpan element with a value which determines how many grid columns this
cell will span. Each gridCol element represents a shared 'column' in a table (to which the cells will snap) even
if it doesn’t appear visually

2.5.4 Table Rows and Cells

A table row is defined using a tr element, which is analogous to the HTML <tr> tag. The tr element acts as a
container for a row of cells with the table’s content.

A tr element has one formatting child element, trPr, which defines the row properties (such as the row’s
width) and whether it can split across a page. Each property is defined by an individual child element under the
trPr element. The complete set of table row properties can be found on the definition for the trPr element. As

12

10
11

12
13
14
15
16
17
18
19

20

21

22

23

24
25
26
27
28
29
30
31
32
33
34
35

Introduction to WordprocessingML

well, a table row can contain two types of content: custom markup (custom XML or structured document
tags), and table cells.

The cells in a row contain the table’s content and are defined by tc elements, which are analogous to HTML
<td> tags.

A tc element has one formatting child element, tcPr, which defines the properties for the cell. Each unique
property is specified by a child element of this element. The complete set of table cell properties can be found
on the definition for the tcPr element. As well, a table cell can contain any valid block-level content, which
allows for the nesting of paragraphs and tables within table cells.

In the example below, the tcW element defines the width of the cell, where the attribute w is the value in
twips. Here the width of the cell is 8,856 units, where units are defined by the attribute type. In this case, dxa
represents twips.

<w:tr>
<w:te>
<w:tcPr>
<w:tcW w:w="8856" w:type="dxa"/>
</w:tcPr>
<w:p/>
</w:tc>
</w:tr>

The tc element contains the cell's content, which, in this case, is an empty p element.

Consider a table having one cell, which contains the text “Hello, world”:

Hello, world

This table's content is represented by the following XML:

<w:tr>
<w:te>
<w:tcPr>
<w:tcW w:w="1770" w:type="dxa"/>
</w:tcPr>
<W:p>
<W:r>
<w:t>Hello, World</w:t>
</wir>
</w:p>
</w:tc>
</w:tr>

13

10
11

12
13
14
15
16
17
18
19
20
21
22
23
24
25
26

28
29
30

31
32
33

34

35

36

37

Introduction to WordprocessingML

At both the row and cell levels, the properties must also specify how the rows and cells will be placed on the
table grid.

The trPr element contains information about the number of grid units which should be omitted ('skipped')
before and after the row is complete using the gridBefore and gridAfter elements, allowing rows to start at
different columns on the grid, as well as a preferred width for that leading/trailing space using the wBefore
and wAfter elements. The tcPr element also contains grid information pertaining to how many grids a cell
spans using the gridSpan element, which determines how many grid units are consumed by the current cell,
as well as a preferred width for that cell using the tcW element.

In the earlier complex table having two rows of two differently sized cells, a consumer shall represent that
table containing three grid columns (one per distinct vertical line). Consider the following XML for the first row
of that table:

<w:tr>

<w:te>
<w:tcPr>
<w:tcW w:w="5145" w:type="dxa" />
<w:gridSpan w:val="2" />
</w:tcPr>
w:p />
</wite>
<w:te>
<w:tcPr>
<w:tcW w:w="2145" w:type="dxa" />
</w:tcPr>
w:p/>
</w:te>
</w:tr>

Again, the gridSpan element is the number of grid columns that cell spans when being laid out on the table
grid. In this example, the first cell of the first row contains two grid columns. As well, the cell specifies its
preferred width using the tcW element, which tells the consumer the width desired by that cell at layout time.

It is important to note that every width in a table is a preferred width - because the table must satisfy the grid
at all times, conflicting table properties must be resolved by overriding preferred widths in a specific manner,
shown below.

2.5.5 Table Layout

Given the information shown in the table shown above, the table is specified as a series of properties:

e Table-level properties (e.g., preferred width)
e Table column grid

14

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24

25

26

28
29
30
31
32
33
34
35
36

Introduction to WordprocessingML

e Row-level properties (e.g., grid units before/after row start/end)
o Cell-level properties (e.g., number of grid units spanned)

In order to manipulate this set of properties into a table, the following logics are used, depending on the type
of table:

2.5.6 Fixed Width Tables

The first type of table is a fixed width table, a table that does not dynamically resize based on its contents. In a
fixed width table, the table information is used in the following manner:

e The table grid is used to create the set of shared columns in the table and their initial widths as defined
in the tblGrid element

e The table’s total width is defined based on the tbIW property — if it is set to auto or nil, then the
width is not yet determined and will be specified using the row and cell information.

e The first table row is read and the initial number of grid units before the row starts is skipped. The
width of the skipped grid columns is set using the wBefore property.

e The first cell is placed on the grid, and the width of the specified grid column span set by gridSpan is
set based on the tcW property.

e Each additional cell is placed on the grid.

e If at any stage, the preferred width requested for the cells exceeds the preferred width of the table,
then each grid column is proportionally reduced in size to fit the table width.

e If the grid is exceeded (e.g., tblGrid specifies three grid columns, but the second cell has a gridSpan of
three), the grid is dynamically increased with a default width for the new grid column.

e For each subsequent row, cells are placed on the grid, and each grid column is adjusted to be the
maximum value of the requested widths (if the widths do not agree) by adding width to the last cell
that ends with that grid column. Again, if at any point, the space requested for the cells exceeds the
width of the table, then each grid column is proportionally reduced in size to fit the table width.

2.5.7 AutoFit Tables

In an AutoFit table (one which specifies that it should “AutoFit to table contents”), the table information is
used in the following manner:

e Perform the steps above to lay out the fixed width version of the table.

e Calculate the minimum content width - the width of the cell's contents including all possible line
breaking locations (or the cell's width, if the width of the content is smaller), and the maximum
content width -the width of the cell's contents (assuming no line breaking not generated by explicit
line breaks).

e The minimum and maximum content width of all cells that span a single grid column is the minimum
and maximum content width of that column.

e For cells which span multiple grid columns, enlarge all cells which it spans as needed to meet that cell's
minimum width.

15

10

11

12

13
14
15
16
17

18

20
21
22

23
24
25
26
27
28
29

30
31
32

Introduction to WordprocessingML

e Ifany cell in a grid column has a preferred width, the first such width overrides the maximum width of
the column's contents.

e Place the text in the cells in the table, respecting the minimum content width of each cell's content. If
a cell's minimum content width exceeds the cell's current width, preferences are overridden as
follows:

e First, override the column widths by making all other grid columns proportionally smaller until each it
at its minimum width. This cell may then grow to any width between its own minimum and maximum
width.

o Next, override the preferred table width until the table reaches the page width.

e Finally, force a line break in each cell's contents as needed

2.5.8 Complex Table Example

The properties above are best illustrated by example:

As shown above, table cells can be merged horizontally. This is represented with a single table cell whose
gridSpan property defines the number of grid units consumed by that table cell for the current row. Consider
the following fixed width table, which makes extensive use of resized and merged cells on what is actually just
a seven-column grid. (The arrows point to each (invisible) vertical line of the grid and the numbers refer to the
grid columns):

[P A Y P T

Although the table is visually complex, the standard rules apply: the first cell in the table is simply a cell which
spans four grid units horizontally, as specified in the gridSpan element, and whose preferred with is 2952
twips, specified in the tcW element:

<w:tc>
<w:tcPr>
<w:tcW w:w="2952" w:type="dxa"/>
<w:gridSpan w:val="4"/>
</w:tcPr>
<w:p/>
</w:tc>

Similarly, all cells indented from the stand and end of the grid specify that indent using the gridBefore and
gridAfter elements. For example, the XML for the second row in the table shows that that row starts three
grid units into the table:

16

N o o A wWwN

(o]

10

11
12
13
14

15

16
17

18

19
20
21
22

Introduction to WordprocessingML

<w:tr>
<w:trPr>
<w:gridBefore w:val="3"/>
<w:wBefore w:w="2748" w:type="dxa"/>
</w:trPr>

</witr>

If we take this fixed width table and introduce a long string into the single cell in row 3, we see that the
presence of this text does not affect cell widths:

longte
xtstrin
gwithn
obreak
ingcha
racters

If we now turn on the AutoFit property and type into the cell in row three, which spans only grid column two,
we see that the algorithm for this AutoFit table causes all cells in grid column two to increase in size,
proportionally decreasing the other grid columns’ size to accommodate the long non-breaking string in the last
cell:

longtextstringwithnobreakingcharacters

Each of the other grid columns was reduced, but since all columns are not at their minimum size, the table
width is not increased even though the table is not yet at the page width.

2.5.9 Vertically Merged Cells

Although the previous examples may have implied that tables have strict definition of rows, table cells can also
be merged vertically. The tcPr element may contain the vimerge element that defines the extent of vertically
merged grid columns within a table. A vmerge element with its val attribute set to restart marks the start of
a vertically merged cell range. A vimerge element with the val attribute set to continue (the default value)

17

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32

Introduction to WordprocessingML

marks the continuation of a vertically merged grid column. Cells between the first and last merged cell that are
part of the vertical merge each must have a vmerge element to continue the vertical merge.

For example, consider a table with two rows and two columns:

First cell, first row Last cell, first row

First cell, second row Last cell, second row

Merging the two rows in the second column will result in the following table:

First cell, first row Last cell, first row
Last cell, second row

First cell, second row

The last cell in the first row starts a merge that is completed in the cell below it, resulting in the following
WordprocessingML:

<w:tr>
<w:te>
<W:p>
<W:r>
<w:t>First cell, first row</w:t>
</w:ir>
</w:p>
</w:tc>
<w:te>
<w:tcPr>
<w:vmerge w:val="restart"/>
</w:tcPr>
<wW:p>
<W:r>
<w:t>Last cell, first row</w:t>
</wir>
</w:p>
<W:p>
<W:r>
<w:t>Last cell, second row</w:t>
</wir>
</w:p>
</w:tc>
</w:tr>

18

O 00 N OO s~ W N e

[~ T = = R S
v A W N L O

16
17

18

19
20
21
22
23
24

25
26

27

28

29

30

31

32
33
34

35
36

Introduction to WordprocessingML

<w:tr>
<w:te>
<W:p>
<W:r>
<w:t>First cell, second row</w:t>
</wir>
</w:p>
</w:te>
<w:te>
<w:tcPr>
<w:vmerge/>
</w:tcPr>
<w:p/>
</w:tc>
</w:tr>

As shown, the vmerge with a value of restart begins (or restarts) a merged region, and the cell with no
value is merged with the one above.

2.6 Custom Markup

Within a WordprocessingML document, it is often necessary for specific documents to contain semantic
information beyond the presentation information specified by this Office Open XML specification. For example,
an invoice document may wish to specify that a particular sentence of text is a customer name, in order for
that information to be easily extracted from the document without the need to parse the text using regular
expression matching or similar. For those cases, multiple facilities are provided for the insertion and round-
tripping of customer defined semantics within a WordprocessingML document.

There are three distinct forms in which customer-defined semantics can be inserted into a WordprocessingML
document, each with their own specific intended usage:

e Smart tags
e Custom XML markup
e Structured document tags (content controls)

The usage and presentation of each of these forms is described in the following sections.

2.6.1 Smart Tags

The first example of customer-defined semantics which can be embedded in a WordprocessingML document
are smart tags. Smart tags allow semantic information to be added around an arbitrary run or set of runs
within a document to provide information about the type of data contained within.

Consider the following text in a WordprocessingML document, with a smart tag around the stock symbol
'CNTS' (where the smart tag is displayed using a purple dotted underline):

19

14
15

16
17

18
19
20
21

22
23
24

25

26
27

28
29
30

Introduction to WordprocessingML

This text would translate to the following WordprocessingML markup:

<w:p w:rsidR="00672474" w:rsidRDefault="00672474">
<W:r>
<w:t xml:space="preserve">This is a stock symbol: </w:t>
</wir>
<w:smartTag w:uri="http://schemas.openxmlformats.org/2006/smarttags"”
w:element="stockticker">
<W:r>
<W:TtO>MSFT</w:t>
</wir>
</w:smartTag>
</wip>

As shown above, the smart tag is delimited by the smartTag element, which surrounds the run (or runs) which
contain the text which is part of the smart tag.

The smart tag itself carries two required pieces of information, which together contain the customer semantics
for this smart tag.

The first of these is the namespace for this smart tag (contained in the uri attribute). This allows the smart tag
to specify a URI which should be round-tripped with this smart tag and be available to a consumer. It is
intended to be used to specify a family of smart tags to which this one belongs —for example, in the sample
above, the smart tag belongs to the http://schemas.openxmlformats.org/2006/smarttags namespace.

The second of these is the element name for this smart tag (contained in the element attribute). This allows
the smart tag to specify a name which should be round-tripped with this smart tag and again available to a
consumer. It is intended to be used to specify a unique name for this type of smart tag — for example, in the
sample above, the smart tag specifies that its data is of type stockticker.

As well as the required information specified above, a smart tag can also contain any number of additional
properties in namespace/name/value sets by adding them to the smart tag’s property bag.

Using the example above, adding a new property called fullCompanyName with no namespace and value
Microsoft Corporation to the smarttag would mean augmenting the output to add the smartTagPr
element with this new property as follows:

20

Jany

O 00 N OO U~ W N

10
11

12
13
14

15

16
17
18
19

20

21
22
23
24
25
26

27
28
29
30
31

32
33
34

Introduction to WordprocessingML

<w:smartTag w:uri="http://schemas.openxmlformats.org/2006/smarttags"
w:element="stockticker">

<w:smartTagPr>
<w:attr w:name="fullCompanyName" w:val="Microsoft Corporation"/>

</w:smartTagPr>

<w:ir>
<WItOMSFT</w:t>

</wir>

</w:smartTag>

The resulting XML, as seen above, simply adds an attr element which specifies the property and value for the
property bag.

A producer can embed a smart tag around any run-level content in a WordprocessingML document in order to
embed additional information about the family and type of the data contained within. This allows ‘tagging’ of
specific regions of a document with these semantics without need to provide context beyond the information
provided in the uri and element attributes.

A consumer can read this smart tag data and provide additional functionality around these
namespace/element pairs, which may or may not be specific to that smart tag type in the document. Examples
of this functionality include: the ability to add/remove this markup via a user interface, ability to provide
actions to operating in the context of this data type, etc.

2.6.2 Custom XML Markup

The next example of customer-defined semantics which can be embedded in a WordprocessingML document
is custom XML markup. Custom XML markup allows the application of the XML elements defined in any valid
XML Schema file to be applied to the contents of a WordprocessingML document in one of two locations:
around a paragraph or set of paragraphs (at the block level); or around an arbitrary run or set of runs within a
document (at the inline level) to provide semantics to that content within the context and structures defined
by the associated XML Schema definition file.

The distinction between custom XML markup and smart tags is based on the fact that custom XML markup
corresponds with the contents of a custom XML schema; which means that as shown below, custom XML
markup can be used at the block-level to mark up the contents of a document on levels beyond that of one or
more runs as well as on the inline (run) level. It can also be validated against a custom XML schema by a
producer at run time.

Consider a simple XML Schema which defines two elements: a root element of invoice, and a child element of
customerName - the first defining that this file's contents are an invoice, and the second specifying that the
enclosed text as a customer's name:

21

O 00 N o U A~ W

11
12
13
14
15
16
17
18
19
20

21
22

23

24
25
26

27
28
29

30
31
32

33

Introduction to WordprocessingML

(winvoice[This is an irvai ce.
And thisis a custamer nare: {_customertiame [Tristan Davis)) Jinvaice®)

This output would translate to the following WordprocessingML markup:

<w:customXml w:uri="http://www.contoso.com/2006/invoice" w:element="invoice">
<w:p>
<W:r>
<w:t>This is an invoice.</w:t>
</wir>
</w:p>
<W:p>
<W:ir>
<w:t xml:space="preserve">And this is a customer name: </w:t>
</wir>
<w:customXml w:uri="http://www.contoso.com/2006/invoice"
w:element="customerName">
<W:ir>
<w:t>Tristan Davis</w:t>
</w:ir>
</w:customXml>
</w:p>
</w:customXml>

As shown above, each of the XML elements from the customer-supplied XML schema is represented within the

document output as a customXml element.
Similar to the smart tag example above, a custom XML element in a document has two required attributes.

The first is the uri attribute, whose contents specify the namespace of the custom XML element in the
document. In the example above, the elements each belong to the
http://www.contoso.com/2006/invoice namespace.

The second is the element attribute, whose contents specify the name of the custom XML element at this
location in the document. In the example above, the root element is called invoice and the child element is
called customerName.

As well as the required information specified above, custom XML elements can also specify any number of
attributes (as specified in the associated XML Schema) on the element. To add this information, the
customXmlPr (properties on the custom XML element) specify one or more attr elements.

Using the example above, we can add a type attribute to the customerName element as follows:

22

O 00 N OO s~ W N e

=
o

I
N

13
14
15
16

17
18
19
20

21
22
23

24

25
26

27
28
29
30

31
32
33
34

Introduction to WordprocessingML

<w:customXml w:uri="http://www.contoso.com/2006/invoice"
w:element="customerName">
<w:customXmlPr>
<w:attr w:uri="http://www.contoso.com/2006/invoice" w:name="type"
w:val="individual"/>
</w:customXmlPr>
<W:r>
<w:t>Tristan Davis</w:t>
</wir>
</w:customXml>

The resulting XML, as seen above, simply adds an attr element which specifies the attribute for the custom
XML element.

A producer can embed a custom XML element around or with block-level or run-level content in a
WordprocessingML document in order to embed the structure of the customer-defined XML Schema within
the WordprocessingML content. This allows ‘tagging’ of specific regions of a document with the semantics
from this schema, while ensuring that the resulting file can be validated to the WordprocessingML schemas.

A consumer can read this custom XML markup and provide additional functionality around this customer-
defined XML markup, which may or may not be specific to that type of XML in the document. Examples of this
functionality include: the ability to add/remove this XML markup via a user interface, ability to provide actions
to operating in the context of this data type, etc.

Each custom XML element is analogous to an XML element in the specified XML schema, and can be nested
arbitrarily to any depth in the document. This facility is limited only by the XML Schema file itself, and the
contents of the current document.

2.6.3 Structured Document Tags

The final example of customer-defined semantics which can be embedded in a WordprocessingML document
is the structured document tag (SDT).

As shown above, smart tags and custom XML markup each provide a facility for embedding customer-defined
semantics into the document: smart tags, via the ability to provide a basic namespace/name for a run or set of
runs within a documents; and custom XML markup, via the ability to tag the document with XML elements and
attributes specified by any valid XML Schema file.

However, each of these techniques, while they each provide a way to add the desired semantic information,
does not provide a way to affect the presentation or interaction within the document. To bridge these two
worlds, structured document tags allow both the specification of customer semantics as well as the ability to
influence the presentation of that data in the document.

23

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32

33
34

Introduction to WordprocessingML

This means that the customer can define the semantics and context of the tag, but can then use a rich set of
pre-defined properties to define its behavior and appearance within the WordprocessingML document's
presentation.

Consider a region which should be tagged with the semantic of "birthday", for the user to enter their date or
birth into the document. Ideally, this region would also utilize a date picker to allow the user to enter the date
from a calendar::

Birthday
Click here to enter a date... =

This content would translate to the following WordprocessingML markup:

<w:sdt>
<w:sdtPr>
<w:alias w:val="Birthday"/>
<w:id w:val="8775518"/>
<w:placeholder>
<w:docPart w:val="DefaultPlaceholder 22479095"/>
</w:placeholder>
<w:showingPlcHdr/>
<w:date>
<w:dateFormat w:val="M/d/yyyy"/>
<w:1id w:val="EN-US"/>
</w:date>
</w:sdtPr>
<w:sdtContent>
<wW:p>
<W:ir>
<W:rPr>
<w:rStyle w:val="PlaceholderText"/>
</w:rPr>
<w:t>Click here to enter a date...</w:t>
</w:ir>
</w:p>
</w:sdtContent>
</w:sdt>

As shown above, each of the structured document tags in the WordprocessingML file is represented using the
sdt element.

24

10

11

12

13
14
15
16

17
18

19
20
21
22

23
24

25

26

27
28
29
30
31
32
33

Introduction to WordprocessingML

Within a structured document tag, there are two child elements which contain the definition and the content
of this SDT. The first of these is the sdtPr element, which contains the set of properties specified for this
structured document tag. The second is the sdtContent element, which contains all the content which is
contained within this structured document tag.

2.6.3.1 Structured Document Tag Properties

Within the SDT’s properties, various properties can be set which affect the appearance and behavior of this
content in the document. These properties can be divided into four groups:

e Shared properties

e Locking properties

e Structured document tag type
o Type-specific properties

The complete set of properties for a structured document tag are found on the sdtPr element.

The first group is properties shared by all types of SDTs. These include, but are not limited to, the semantic
name for the SDT, a unique ID (as an integer) that is round-tripped and allows the control to be uniquely
identified across sessions, and a reference to a document building block that should be displayed as
placeholder text.

The next group is the locking properties for the tag — these specify whether any consumer should allow the
contents of the SDT to be edited, or the SDT itself to be deleted from the document.

The next group, the structured document tag’s type, specifies how the content should be expressed in a
document. These types include: plain text (all contents are of one formatting), rich text, date picker, combo
box, drop-down list, and image. Each of the types provides user interface restrictions that restrict the contents
to only those specified by the type (e.g., the picture cannot contain text).

Finally, the type-specific properties contain properties that are sensible in the context of that type. For
example, the date format for a date picker or the drop-down list entries for a drop-down list/combo box. Type-
specific properties are stored as children of the type’s element.

Referring to the example above, the date properties are stored underneath the date element, as follows:
<w:sdtPr>
<w:date>
<w:dateFormat w:val="M/d/yyyy"/>
<w:1id w:val="EN-US"/>

</w:date>
</w:sdtPr>

This ensures that these properties are only available in the appropriate context(s).

25

10
11
12
13
14

15
16
17

18
19

21
22
23
24
25
26
27
28
29
30
31
32
33
34

Introduction to WordprocessingML

2.6.3.2 Structured Document Tag Content

The second child of the sdt element is the sdtContent element, which contains all the content which is
contained within this structured document tag.

2.6.3.3 XML Mapping

An additional property for SDTs allows their contents to be stored in another part (in particular, in the custom
XML data storage within the file). The presence of the dataBinding element specifies that the contents of this
SDT are simply a cache of the data stored at a particular XML element in a particular custom XML data storage
part.

2.7 Sections

Within the main document story, there is also often a need for groupings of content on a basis larger than a
paragraph (for example, ensuring that a specific set of paragraphs and tables are printed in landscape view,
while ensuring that the remainder of the document is printed in portrait view). In order to group this content,
a document can be divided into multiple sections, each of which defines a region of content in the document
and allows the application of a set of section-level properties.

Consider a WordprocessingML document with two paragraphs of content, the first of which should be
displayed on a page printed in portrait view, and the second of which should be displayed on a page printed in
landscape view (the page content should be rotated 90 degrees to the left on the underlying page).

In order to have each of these paragraphs on different pages having different page orientation characteristics,
this document would be split into two sections. Looking at the WordprocessingML for the example above:

<w:body>
<w:p>
<W:pPr>
<w:sectPr>
<w:pgSz w:w="12240" w:h="15840"/>
<w:pgMar w:top="1440" w:right="1800" w:bottom="1440"
w:left="1800" w:header="720" w:footer="720" w:gutter="0"/>
<w:cols w:space="720"/>
<w:docGrid w:1linePitch="360"/>
</w:sectPr>
</w:pPr>
<W:r>
<w:t>This is sentence one.</w:t>
</wir>
</w:p>

26

O 00 N OO s~ W N e

S
N L, O

13

14
15
16

17

18
19

20
21
22
23
24

25
26
27

28
29

Introduction to WordprocessingML

<w:p>
<W:ir>
<w:t>This is sentence two.</w:t>
</wir>
</w:ip>
<w:sectPr>
<W:pgSz w:w="15840" w:h="12240" w:orient="landscape"/>
<w:pgMar w:top="1800" w:right="1440" w:bottom="1800"
w:left="1440" w:header="720" w:footer="720" w:gutter="0"/>
<w:cols w:space="720"/>
<w:docGrid w:1linePitch="360"/>
</w:sectPr>
</w:body>

This syntax defines two sections using two distinct sectPr elements: the first has a page size of 12,240
twentieths of a point wide and 15,640 twentieths of a point tall; the second has a page size of 15,640
twentieths of a point wide and 12,240 twentieths of a point tall, and is oriented in landscape mode.

2.7.1 Section Properties

As shown above, the end of a section is defined as a set of properties applied to the last paragraph in that
section—converting that paragraph mark into a section break (i.e., a paragraph that closes a section).

Those properties are contained in a sectPr element, which is located within the paragraph properties (the
pPr element) for the final paragraph in that section. Within the definition of section properties, the properties
to be applied to that section (including, but not limited to, page size and orientation, line numbering settings,
margins, and columns) are specified. The complete set of section properties is located on the definition for the
sectPr element.

The only exception to this rule is the final set of section properties in this document. These are stored as the
last child of the body element. This is done because the document’s last paragraph must specify paragraph
properties, and this syntax enforces that the final set of section properties are specified.

Going back to our example, the first section break is defined within the last paragraph for that section, but the
last section properties are stored after the final paragraph.

27

O 00 N OO s~ W N e

N N N N N N N N N B B B B R R R m s
0 N o U1 A W N B O O ® N O 1 A W N LB O

29

30
31

32
33
34
35
36
37
38
39

Introduction to WordprocessingML

<w:body>
<wW:p
<W:pPr>
<w:sectPr>
<W:pgSz w:w="12240" w:h="15840"/>
<w:pgMar w:top="1440" w:right="1800" w:bottom="1440"
w:left="1800" w:header="720" w:footer="720" w:gutter="0"/>
<w:cols w:space="720"/>
<w:docGrid w:linePitch="360"/>
</w:sectPr>
</w:pPr>
<W:r>
<w:t>This is sentence one.</w:t>
</wir>
</w:ip>
<wW:p>
<W:r>
<w:t>This is sentence two.</w:t>
</wir>
</w:p>
<w:sectPr>
<W:pgSz w:w="15840" w:h="12240" w:orient="landscape"/>
<w:pgMar w:top="1800" w:right="1440" w:bottom="1800"
w:left="1440" w:header="720" w:footer="720" w:gutter="0"/>
<w:cols w:space="720"/>
<w:docGrid w:1linePitch="360"/>
</w:sectPr>
</w:body>

2.7.2 Section Breaks

As well as specifying the section's properties, the type of section break is specified using the type element.
WordprocessingML supports four distinct types of section breaks:

e Next page section breaks (the default if type is not specified), which begin the new section on the
following page.

e (Odd page section breaks, which begin the new section on the next odd-numbered page.

e Even page section breaks, which begin the new section on the next even-numbered page.

e Continuous section breaks, which begin the new section on the following paragraph. This means that
continuous section breaks might not specify certain page-level section properties, since they must be
inherited from the following section. These breaks, however, can specify other section properties, such
as line numbering and footnote/endnote settings.

28

10
11
12

13

14
15
16
17

18

19

20

21

22
23
24
25
26

27

28

29

30
31
32

33

Introduction to WordprocessingML

2.8 Styles

After looking at the primary elements of block-level content in a WordprocessingML file, it is now necessary to
look at the information stored in the document that affects how this content is displayed.

The first such group of information is styles. Within a WordprocessingML file, styles are predefined sets of
paragraph and/or character properties which can be applied to text within the document. This allows the
formatting properties to be stored and managed independently from the content, allowing the look of
document content to be changed in a single location (e.g., the look of all first-level headings is changed by
changing the style with styleld Heading1 rather than looking for and changing each paragraph in the
document).

The Normal paragraph style in a word processing document can have any number of formatting properties,
e.g., font face = Times New Roman; font size = 12pt; paragraph justification = left). All paragraphs that
reference this paragraph style would automatically inherit these properties.

2.8.1 Styles Part

Style information in a WordprocessingML document is stored in the Styles part within the package, which is
stored via an implicit relationship from the Main Document or Glossary Document part of relationship type
http://schemas.openxmlformats.org/wordprocessingml/2006/styles and has a content type of
vnd-openxmlformats.officedocument.wordprocessingml-styles+xml.

The styles part stores two types of style information for the document:

e Style definitions
e Latent style information

2.8.2 Style Definitions

Each style defined within a WordprocessingML document requires a style definition. The style definition
contains all of the information needed by a consumer to store and display that style within a
WordprocessingML document, and is defined using the style element. The style definition for any style in
WordprocessingML can be divided into three segments (Note: the complete definition of style properties can
be found on the reference for the style element):

e Common style properties
e Style ‘types’
e Type specific properties

Common style properties refer to the set of properties which can be used regardless of the type of style; for
example, the style name, additional aliases for the style, a style ID (used by the document content to refer to
the style), if style is hidden, if style is locked, etc.

Consider a style called Heading 1 in a document as follows:

29

O 00 N OO s~ W N e

=
o

I
N

13
14

15

16

17

18

19

20

21

22
23
24
25
26
27
28
29
30

32
33

34

35
36
37

Introduction to WordprocessingML

<w:style w:type="paragraph" w:styleId="Headingl">
<w:name w:val="heading 1"/>
<w:basedOn w:val="Normal"/>
<w:next w:val="Normal"/>
<w:link w:val="HeadinglChar"/>
<w:priority w:val="1"/>
<w:qformat/>
<w:rsid w:val="@0F303CE"/>

</w:style>

Above the formatting information specific to this style type are a set of common style properties which define
information shared by all style types.

Style types refer to the property on a style that defines the type of style created with this style definition.
WordprocessingML supports six types of style definitions:

e Paragraph styles

e Character styles

e Linked styles (paragraph + character)

e Table styles

e Numbering styles

e Default paragraph + character properties

Consider a style called Heading 1 in a document as follows:

<w:style w:type="paragraph" w:styleId="Headingl">
<w:name w:val="heading 1"/>
<w:basedOn w:val="Normal"/>
<w:next w:val="Normal"/>
<w:1link w:val="HeadinglChar"/>
<w:priority w:val="1"/>
<w:qformat/>
<w:rsid w:val="@0F303CE"/>

</w:style>

The type attribute has a value of paragraph, which indicates that the following style definition is a paragraph
style.

2.8.3 Paragraph Styles

The first type of style definition, paragraph styles are styles that apply to the contents of an entire paragraph
as well as the paragraph mark. This definition implies that the style can define both character properties
(properties that apply to text within the document) as well as paragraph properties (properties which apply to

30

10
11

12

13

14
15
16

Introduction to WordprocessingML

the positioning and appearance of the paragraph). Paragraph styles cannot be referenced by runs within a
document, they must be referenced by the pStyle element within a paragraph’s paragraph properties (pPr)
element.

A paragraph style has three defining type-specific characteristics:

e The type attribute on the style has a value of paragraph, which indicates that the following style
definition is a paragraph style.

e The next element defines an editing behavior which supplies the paragraph style to be automatically
applied to the next paragraph when ENTER is pressed at the end of a paragraph of this style.

e The style specifies both paragraph-level and character-level properties using the pPr and rPr
elements, respectively. In this case, the run properties are the set of properties applied to each run in
the paragraph.

The paragraph style is then applied to paragraphs by referencing the styleld attribute value for this style in the
paragraph properties’ pStyle element.

Consider a paragraph style titled "Test Paragraph Style" which defines: paragraph spacing = double, paragraph
indent = 1” (first line only); font = Algerian, font color = red, font size = 20 points. The resulting style definition
would be:

<w:style w:type="paragraph" w:styleId="TestParagraphStyle">
<w:name w:val="Test Paragraph Style"/>
<w:qformat/>
<w:rsid w:val="00F85845"/>
<W:pPr>
<w:spacing w:1line="480" w:lineRule="auto"/>
<w:ind w:firstLine="1440"/>
</w:pPr>
<W:rPr>
<w:rFonts w:ascii="Algerian" w:hAnsi="Algerian"/>
<w:color w:val="ED1C24"/>
<W:sz w:val="40"/>
</wirPr>
</w:style>

Notice that the character properties for the style are under the rPr element, and the paragraph properties are
under the pPr element.

The document content for a paragraph of this style would be:

31

0 N o b~ W N

10

11
12
13
14

15

16

17
18
19
20

21
22

23
24

25
26
27
28
29
30
31
32
33
34
35

36

Introduction to WordprocessingML

<w:p>
<W:pPr>
<w:pStyle w:val="TestParagraphStyle"/>
</w:pPr>
<w:ir>
<w:t xml:space="preserve">Here is some fancy Text</w:t>
</wir>
</w:ip>

The pStyle element links the paragraph with the style definition.

2.8.4 Character Styles

The next type of style definition, character styles are styles which apply to the contents of one or more runs of
text within a document’s contents. This definition implies that the style can only define character properties
(properties which apply to text within a paragraph) because it cannot be applied to paragraphs. Character
styles can only be referenced by runs within a document, and they must be referenced by the rStyle element
within a run’s run properties element.

A character style has two defining type-specific characteristics:

e The type attribute on the style has a value of character, which indicates that the following style
definition is a character style.

o The style specifies only character-level properties using the rPr element. In this case, the run
properties are the set of properties applied to each run which is of this style.

The character style is then applied to runs by referencing the styleld attribute value for this style in the run
properties’ rStyle element.

Consider a character style titled "Test Character Style" which defines; font = Courier New, font color = yellow;
underline. The resulting style definition would be:

<w:style w:type="character" w:styleId="TestCharacterStyle">
<w:name w:val="Test Character Style"/>
<w:priority w:val="99"/>
<w:qformat/>
<w:rsid w:val="@OE77BF0"/>
<W:rPr>
<w:rFonts w:ascii="Courier New" w:hAnsi="Courier New"/>
<w:color w:val="FFF200"/>
<W:u w:val="single"/>
</W:rPr>
</w:style>

Notice that the character properties applied using this style are under the rPr element. The document content
for a paragraph with a run of this style would be:

32

O 00 N OO s~ W N e

T e =
A W N L O

15
16

17

18
19
20
21
22

23

24
25
26
27

28
29
30

31

32
33
34
35
36

Introduction to WordprocessingML

<w:p>
<w:ir>
<w:t xml:space="preserve">The following text is in the </w:t>
</wir>
<w:ir>
<W:rPr>
<w:rStyle w:val="TestCharacterStyle"/>
</w:rPr>
<w:t>character style</w:t>
</wir>
<w:ir>
<w:it>.</wit>
</wir>
</w:ip>

The rStyle element in the second run links that run with the style definition, inheriting the formatting
properties for that run.

2.8.5 Linked Styles

The next type of style definition, linked styles are actually a paired combination of styles which can be applied
to the contents of one or more runs of text within a document’s contents or the entire contents of one or
more paragraphs in a WordprocessingML document. This definition implies that the style can define both a set
of character properties (properties which apply to text within a paragraph) as well as a set of paragraph
properties (properties which apply to the positioning and appearance of the paragraph) because it must be
possible to apply the style to paragraphs as well as characters.

In order to accomplish these dual uses, a linked style is actually a pairing of a paragraph style and a character
style in the WordprocessingML document. Each style exists uniquely within the styles part, but are linked by
the link element, which specifies that these styles are each half of a linked style definition and should be
treated as one style at runtime.

A typical example of the use of a linked style is a quote style - if the style is applied to a paragraph, the quoted
text should be indented additionally to create a block quote effect, but if the style is applied to text in a
paragraph, only the character level effects should be applied.

Consider the following two styles which comprise a linked style pairing:

<w:style w:type="paragraph" w:styleId="TestLinkedStyle">
<w:name w:val="Test Linked Style"/>
<w:1link w:val="TestLinkedStyleChar"/>
<w:gqformat/>
<w:rsid w:val="009C1646"/>

33

O 00 N OO s~ W N e

e e N e e T
0 N OO A W N R O

19
20
21

22
23
24
25
26
27

28
29

31
32
33
34
35
36
37
38
39

Introduction to WordprocessingML

<W:pPr>
<w:spacing w:1line="480" w:lineRule="auto"/>
<w:ind w:left="1440"/>
</w:pPr>
<W:rPr>
<w:rFonts w:ascii="Arial" w:hAnsi="Arial"/>
<w:color w:val="22B14C"/>
</w:rPr>
</w:style>
<w:style w:type="character” w:styleId="TestLinkedStyleChar">
<w:name w:val="Test Linked Style Char"/>
<w:link w:val="TestLinkedStyle"/>
<w:rsid w:val="009C1646"/>
<W:rPr>
<w:rFonts w:ascii="Arial" w:hAnsi="Arial"/>
<w:color w:val="22B14C"/>
</W:rPr>
</w:style>

The link element in the paragraph style specifies TestLinkedStyleChar, the styleld of the paired character
style, and the link element in the character style specifies TestLinkedStyle, the styleld of the paired
paragraph style, creating a linked style combination.

Paragraph-level instances of linked styles can only be referenced by paragraphs within a document, and they
must be referenced by the pStyle element within the paragraph’s paragraph properties element (pPr), which
must referrence the paragraph version of the linked style. Character-level instances of linked styles can only be
referenced by a run's run properties element (rPr) within a document, and they must be referenced by the
rStyle element within the run properties element which must reference the character version of the linked
style.

Consider a linked style titled "Test Linked Style" which defines; font = Arial, font color = green; paragraph
spacing = double, indent = 1” left. The resulting style definitions would be:

<w:style w:type="paragraph” w:styleId="TestLinkedStyle">
<w:name w:val="Test Linked Style"/>
<w:link w:val="TestLinkedStyleChar"/>
<w:gqformat/>
<w:rsid w:val="009C1646"/>
<W:pPr>
<w:pStyle w:val="TestLinkedStyle"/>
<w:spacing w:1ine="480" w:lineRule="auto"/>
<w:ind w:left="1440"/>
</wW:pPr>

34

O 00 N OO s~ W N e

T e =
A W N L O

15
16
17

18
19
20
21
22
23
24
25

26
27

28

29
30
31
32
33
34
35
36
37
38

Introduction to WordprocessingML

<w:rPr>
<w:rFonts w:ascii="Arial" w:hAnsi="Arial"/>
<w:color w:val="22B14C"/>
</W:rPr>
</w:style>
<w:style w:type="character” w:styleId="TestlLinkedStyleChar">
<w:name w:val="Test Linked Style Char"/>
<w:link w:val="TestLinkedStyle"/>
<w:rsid w:val="009C1646"/>
<W:rPr>
<w:rFonts w:ascii="Arial" w:hAnsi="Arial"/>
<w:color w:val="22B14C"/>
</wW:rPr>
</w:style>

Notice that the linked style definition is composed of the paragraph style, which specifies both the run and
paragraph properties, and the character style, which specifies only the run properties. The document content
for a paragraph with this linked style would be:

<wW:p>
<W:pPr>
<w:pStyle w:val="TestLinkedStyle"/>
</W:pPr>
<W:r>
<w:t xml:space="preserve">A para version of Test Linked Style.</w:t>
</wir>
</w:ip>

The pStyle element in the paragraph’s properties links the paragraph with the paragraph version of the linked
style definition.

The document content for a paragraph with a run of this linked style would be:

<wW:p>
<w:ir>
<w:t xml:space="preserve">Next run is character version of </w:t>
</wir>
<w:ir>
<W:rPr>
<w:rStyle w:val="TestLinkedStyleChar"/>
</w:rPr>
<w:t>Test Linked Style</w:t>
</wir>

35

Jany

A W N

10

11
12
13

14

15
16
17
18
19
20
21
22
23
24

25
26

27

28
29
30
31
32
33
34

Introduction to WordprocessingML

<W:r>
<KwW:t>.</wit>
</wir>
</w:ip>

The rStyle element in the second run’s properties links the run with the character version of the linked style
definition.

2.8.6 Numbering Styles

Numbering styles are style definitions which specify common style properties for a multi-level numbering
format within a document. This means that a numbering style defines only a single paragraph property: a
reference to a numbering definition stored in the document’s numbering part, using the numPr element.

Unlike paragraph and character styles, numbering styles are never directly referenced by content in the
document — instead, an abstract numbering definition (covered in the numbering topic of this section)
specifies that it is actually the underlying numbering information for a numbering style.

Consider a numbering style “Test Numbering Style”:

<w:style w:type="numbering" w:styleId="TestNumberingStyle">
<w:name w:val="Test Numbering Style" />
<w:priority w:val="99" />
<w:rsid w:val="0045009F" />
<W:pPr>
<W:numPr>
<w:numId w:val="1" />
</w:numPr>
</wW:pPr>
</w:style>

The only information specified in the numbering style definition is a reference to the numbering definition for
the numbering information which is defined by this numbering style.

2.8.7 Table Styles

The last conventional type of style definition, table styles are styles which apply to the contents of zero or
more tables within a document. This definition implies that the style can only define table properties
(properties which apply to the table and its constituent rows and cells), however a table style can also define
paragraph properties (properties which apply to the positioning and appearance of paragraphs) as well as
character properties (properties which apply to runs) for all of the paragraphs and runs within the specified
table in the document. Table styles can only be referenced by tables within a document, and they must be
referenced by the tblStyle element within a table’s table properties (tblPr) element.

36

Introduction to WordprocessingML

1 Like the style definitions discussed above, table styles specify all of the properties that can be applied to a
2 table, as well as paragraph and character properties for the table’s contents. However, unlike other style
3 definitions, table styles allow for the definition of conditional formats for different regions of the table.

4 These table conditional formats are applied to different regions of the table as follows:

Top left cell Header row Top right cell
First column Table body Last column
Bottom left cell Footer row Bottom right cell

6 All rows in the table can also have conditional formatting on an alternating row/column basis as well as

7 follows:

banded row

even row stripe
banded row

even row stripe

37

10
11

12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41

Introduction to WordprocessingML

When specified, these conditional formats are applied in the following order (therefore subsequent formats
override properties on previous formats):

e Whole table

e Banded columns, even column banding

e Banded rows, even row banding

e First row, last row

e First column, last column

o Top left, top right, bottom left, bottom right

Consider a table style “Test Table Style” defined as follows: all cells with 1pt table borders on all sides, 0.1” cell
margins on left and right of cells, and 0” cell margins on top and bottom of cells, as well as header row specific
formatting of: red shading, bold text as follows:

<w:style w:type="table" w:styleld="TestTableStyle">
<w:name w:val="Test Table Style"/>
<w:basedOn w:val="TableNormal"/>
<w:priority w:val="99"/>
<w:rsid w:val="00340CC4"/>
<w:tblPr>
<w:tblBorders>
<w:top w:val="single" w:sz="4" w:space="0" w:color="auto"/>
<w:left w:val="single" w:sz="4" w:space="0" w:color="auto"/>
<w:bottom w:val="single" w:sz="4" w:space="0" w:color="auto"/>
<w:right w:val="single" w:sz="4" w:space="0" w:color="auto"/>
<w:insideH w:val="single" w:sz="4" w:space="0" w:color="auto"/>
<w:insideV w:val="single" w:sz="4" w:space="0" w:color="auto"/>
</w:tblBorders>
<w:tblCellMar>
<w:top w:w="0" w:type="dxa"/>
<w:left w:w="108" w:type="dxa"/>
<w:bottom w:w="0" w:type="dxa"/>
<w:right w:w="108" w:type="dxa"/>
</w:tblCellMar>
</w:tblPr>
<w:tblStylePr w:type="firstRow">
<W:rPr>
<w:b/>
</w:rPr>
<w:tcPr>
<w:shd w:val="clear" w:color="auto" w:fill="ED1C24"/>
</w:tcPr>
</w:tblStylePr>
</w:style>

38

10

11

12

13
14

15
16
17

18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34

35

Introduction to WordprocessingML

The tbIPr element holds the formatting which is applied to the entire table, and the tblStylePr element with a
type attribute value of firstRow holds the formatting for the first table row, specifically the bold run
property and red cell shading.

An individual instance of a table defines an association with a table style using the tblStyle element in the
table’s properties (tblPr), as discussed above. However, individual tables can choose whether to apply the
following aspects of the table’s conditional formats individually:

e First row

e last row

e First column

e Last column

e Row banding

e Column banding

The use or omission conditional formats are specified using the tblLook element, which contains a bitmask
representing which properties are applied and omitted.

Consider two tables using the table style "Style2"; one which specifies that it should only use the header row
and footer row conditional formatting properties from the table style, and the other which specifies that it
should use the header row, footer row, and banded row conditional formatting:

<w:tbl>
<w:tblPr>
<w:tblStyle w:val="Style2"/>
<w:tblW w:w="0" w:type="auto"/>
<w:tblLook w:val="0660"/>
</w:tblPr>

</w:tbl>

<w:tbl>
<w:tblPr>
<w:tblStyle w:val="Style2"/>
<w:tblW w:w="0" w:type="auto"/>
<w:tblLook w:val="0460"/>
</w:tblPr>

</w:tbl>

The tables each specify the appropriate set of conditional formats using the tblLook element, as seen by the
identical table styles in the tblStyle element, and different tblLook values.

39

10

11
12
13

14
15

16
17
18
19
20

21
22

23
24
25
26
27
28
29
30
31
32
33
34
35
36
37

Introduction to WordprocessingML

2.8.8 Default Document Paragraph and Character Properties

The final type of style in a WordprocessingML document is the default paragraph and character properties for
the document. Although this is not a style in the strict sense of the word (because this property set cannot
directly be applied to text) it defines the basic set of formatting properties which are inherited by paragraphs
and runs in the document.

The following section, entitled Style Inheritance, explains exactly how the default document paragraph and
character properties influence the appearance of all content in the document.

2.8.9 Style Inheritance

In order to compile the complete set of paragraph and character properties specified by any given style (as
appropriate), a consumer must follow the rule of style inheritance to determine each property in that set.

Style inheritance states that styles of any given type may inherit from other styles of that type, and therefore a
consumer must ‘build up’ the style information by following the inheritance tree. This inheritance is defined via
the basedOn element, which specifies the styleld of the parent style.

The “Tristan Test” paragraph style can inherit properties from the “Heading 1” paragraph style, which itself can
inherit properties from the “Normal” paragraph style.

To build up the resulting style, a consumer must trace the hierarchy (following each basedOn value) back to a
style which has no basedOn element (is not based on another style). The resulting style is then constructed by
following each level in the tree, applying the specified paragraph and/or character properties as appropriate.
When properties conflict, they are overridden by each subsequent level (this includes turning OFF a property
set at an earlier level). Properties which are not specified simply do not change those specified at earlier levels.

Consider a character style “Green” which specifies only that the text color is green, but inherits from another
character style “Base” which defines a font face of Arial, as well as bold:

<w:style w:type="character" w:styleId="Green">
<w:name w:val="Green" />
<w:basedOn w:val="Base" />
<w:rPr>
<w:color w:val="22B14C" />
</w:rPr>
</w:style>

../Local Settings/Temp/styles.xml<w:style w:type="character" w:styleId="Base">
<w:name w:val="Base" />
<W:rPr>
<w:rFonts w:ascii="Arial" w:hAnsi="Arial" />
<w:b />
</wW:rPr>
</w:style>

40

../Local%20Settings/Temp/styles.xml

00 N o U b~ W

10
11

12

13
14
15

16
17

18

Introduction to WordprocessingML

The definition of the Green character style has a basedOn element which specifies the Base style. This means
that any use of the Green style is defined as bold, green, Arial text.

Conversely, a producer should not output any property on a style which has already been set by a previous
level of the style hierarchy, as well as those which match the document defaults. This means that if the
document defaults or any previous level in a style’s hierarchy specify a property which is unchanged at this
level, that property should not be part of the style definition in the resulting WordprocessingML. Adding a
property at multiple levels in the style hierarchy is not invalid, but unnecessarily duplicative as the setting is
already applied to the text, resulting in an unnecessary increase to file size.

If the document default font is Bauhaus 93 and the Heading 1 style also specifies the Bauhaus 93 font, then
a producer should not output any rFonts element for the Heading 1 style definition, because that formatting
is inherited from the document defaults.

2.8.10 Style Application

With the various flavors of styles available, multiple style types can be applied to the same content within a
file, which means that properties must be applied in a specific deterministic order. As with inheritance, the
resulting formatting properties set by one type can be unchanged, removed, or altered by following types.

The following table illustrates the order of application of these defaults, and which properties are impacted by
each:

Table Characters Paragraph List ltem

Application order

w N

w

10

11
12

13
14
15
16
17
18
19
20

21
22
23
24

25

26
27
28
29
30
31
32
33
34
35
36

Introduction to WordprocessingML

This process can be described as follows: First, the document defaults are applied to all runs and paragraphs in
the document. Next, the table style properties are applied to each table in the document, following the
conditional formatting inclusions and exclusions specified per table. Next, numbered item and paragraph
properties are applied to each paragraph formatted with a numbering style. Next, paragraph and run
properties are applied to each paragraph as defined by the paragraph style. Next, run properties are applied to
each run with a specific character style applied. Finally, we apply direct formatting (paragraph or run
properties not from styles).

2.8.11 Latent Styles

The final piece of information stored in the styles part in the document, aside from style definition
information, is latent style information.

Latent styles are all styles contained in a document’s template which have not yet been instantiated (used) in
the current instance of the document.

In WordprocessingML, there are often properties which must be set on all styles in a document template
regardless of whether they are being used: for example, whether or not the style can be applied in the current
document (locked state), Ul sorting priority, whether the style should be shown in the user interface, etc. In
order for the document to function correctly, it is essential that this information is stored within the
document, so that a consumer can determine the necessary style information from the document alone
(without access to the template). However, it would be grossly inefficient for the document to store all style
information for all styles simply to store this information, so latent styles are used to store just the necessary
style properties without caching all style information in the document.

In order to do this efficiently, the document declares a latentStyles element in the styles part which defines
the default properties applied to all latent styles in the document. All styles whose properties do not match the
default for the set of style properties which must be defined for all styles are explicitly defined using the
IsdException element.

Consider the following latent style information stored in a document’s styles part:

<w:latentStyles w:deflLockedState="off" w:defPriority="99"

w:defSemiHidden="on" w:defUnhidelWhenUsed="on" w:defQFormat="off"

w:count="180">

<w:1lsdException w:name="Normal" w:unhideWhenUsed="off"
w:gformat="on"/>

<w:1lsdException w:name="heading 1" w:semiHidden="off" w:priority="1"/>

<w:1lsdException w:name="heading 2" w:priority="1"
w:unhideWhenUsed="on"/>

<w:1lsdException w:name="heading 3"

<w:1lsdException w:name="heading 4"

<w:1lsdException w:name="heading 5"

=

:semiHidden="off/>
:priority="1" w:gformat="on"/>
:priority="1" w:qformat="on"/>

= =

42

10

11

12
13
14

15

16
17

18
19
20
21
22
23

24
25

26

27
28
29

30

31

32

33

34

Introduction to WordprocessingML

<w:1sdException
<w:1lsdException
<w:1lsdException
<w:1lsdException
<w:1lsdException
</w:latentStyles>

:name="heading 6" w:priority="1" w:gformat="on"/>
:name="heading 7" w:priority="1" w:qgformat="on"/>
:name="heading 8" w:priority="1" w:qformat="on"/>
:name="heading 9" w:priority="1" w:qformat="on"/>
:name="Normal Indent" w:priority="6" w:qformat="on"/>

£ £ £ £ =

The attributes on the latentStyles element define the properties applied to all latent styles for this document.
All styles whose properties do not match the default latent styles properties are explicitly defined using the
values on the IsdException elements.

2.9 Fonts

2.9.1 Font References

Within a WordprocessingML document, font face information can be referenced by any set of run properties,
both as part of a style definition or direct formatting on one or more runs in the document's contents. This
reference is established by referencing the primary name of the font face that is used in the rFonts element of
the run properties, linking that run with the desired font face.

For example, consider a run of text that has been directly formatted to use the Arial Black font face. This
setting would be specified as follows on the run's properties:

<W:r>
<W:rPr>
<w:rFonts w:ascii="Arial Black" w:hAnsi="Arial Black" />
</W:rPr>
<w:t>This run of text uses the Arial Black font face.</w:t>
</w:r>

The rFonts element specifies that the run should be formatted using the Arial Black font face.
Applications can then look up and use the font with primary name of Arial Black when formatting this run.

2.9.2 Font Reference Types

In the example above, two attributes were present, both referring to the font face with primary name Arial
Black. This simple case illustrates the ability for a WordprocessingML document to store up to four fonts
which may be used on the contents of a run, as follows:

e ASCll font

e High ANSI font

e East Asian font

e Complex Script font

Each of these font faces is used to format the characters in the run that fall under their purview:

43

10
11
12
13
14
15
16

17

18

19

20

21

22
23
24

25
26
27

28
29

30

31

32
33

Introduction to WordprocessingML

The ASCII font formats all characters in the ASCII range (character values 0—127). This font is specified using the
ascii attribute on the rFonts element.

The East Asian font formats all characters that belong to Unicode sub ranges for East Asian languages. This font
is specified using the eastAsia attribute on the rFonts element.

The complex script font formats all characters that belong to Unicode sub ranges for complex script languages.
This font is specified using the cs attribute on the rFonts element.

The high ANSI font formats all characters that belong to Unicode sub ranges other than those explicitly
included by one of the groups above. This font is specified using the hAnsi attribute on the rFonts element.

For example, consider a run of text defined as follows:

<W:r>
<w:rPr>
<w:rFonts w:ascii="Arial Black" w:hAnsi="Arial Black" w:cs="Arial"
w:eastAsia="SimSun"/>
</W:rPr>

</wir>
The rFonts element specifies that the contents of this run are formatted as follows:

e Complex script characters used the Arial font
e East Asian characters used the SimSun font
e All other characters used the Arial Black font

2.9.3 Ambiguous Characters

When classifying characters into one of the four slots defined above, it is likely that the classification of some
characters will be ambiguous (the resulting classification would be equally applicable for one or more font
slots).

To handle this, the font face information can also include a hint, which specifies how ambiguous mappings are
resolved into a font slot. This information is stored on the hint attribute on the rFonts element, and specifies
the bucket into which these ambiguous characters fall.

For example, if the hint attribute has a value of eastAsia, then all ambiguous characters shall be formatted
using the East Asian font face.

2.9.4 Font Table

Within a document, the font table contains information about the fonts used in the document to allow:

e Applications to perform substitution with the most appropriate possible font when the desired font
face is not available on the system. Since some fonts are commercially distributed, it is possible for a

44

10
11
12
13

14

15
16
17
18
19
20
21
22

23

25

26

27

28

29

30

31
32
33
34
35

36

Introduction to WordprocessingML

document to be formatted with one or more fonts that are not available depending on the machine
opening the current system. This information allows the application that cannot locate the desired
font to perform the most appropriate possible match.

e Embedding of fonts in the document to prevent the need for font substitution

The font table part is stored via an implicit relationship from either the main document part or the glossary
document part, and has a relationship type of
http://schemas.openxmlformats.org/wordprocessingml/2006 /fontTable, and a content type of vnd-
openxmlformats.officedocument.wordprocessingml-fontTable+xml.

2.9.5 Font Substitution Data

The first classification of data stored in the font table are an optional set of font metrics which are queried
from the font and stored in the document such that future applications can utilize them when the desired font
is not available. If a particular font face cannot be located on the current system, then this data is used to
substitute a font that most appropriately matches its characteristics.

For example, consider the font substitution data stored for the Arial Black font:

<w:font w:name="Arial Black">

<w:panosel w:val="020B0A04020102020204" />

<w:charset w:val="00" />

<w:family w:val="swiss" />

<w:pitch w:val="variable" />

<w:sig w:usb@="00000287" w:usbl="00000000" w:usb2="00000000"

w:usb3="00000000" w:csbo="0000009F" w:csbl="00000000" />

</w:font>

This data is linked to the font face with a name of Arial Black via the name attribute, and stores the
following information about the font (see the reference material on fonts for more details):

e The font's Panose-1 number

e The character set of the font

e The font's family

e The font's pitch

e The code pages and Unicode sub ranges supported by the font

2.9.6 Font Embedding

As well as providing information about the font's metrics, applications may be directed to embed the contents
of a font (partially or as a whole) into a document, a process known as font embedding. Font embedding
literally embeds an obfuscated version of the font into the file so that it may be retrieved and used to view the
contents of this document - but the obfuscation ensures that the font cannot be extracted and used for any
other document (as it may have a commercial license).

Within the font table, when a font is embedded there are explicit relationships to each font form needed:

45

http://schemas.openxmlformats.org/wordprocessingml/2006/fontTable

10
11
12

13
14

15

16
17
18
19
20
21

22
23

24
25
26

27

28
29

30
31

32

33

Introduction to WordprocessingML

e Regular
e Bold
e Italic

e Bold + Italic
Each form is obfuscated using the mechanism described in the reference material on this subject.

2.9.7 Theme Fonts

As well as storing standard font face information, run properties may store an abstraction for font face
information known as theme fonts. Theme fonts are values that specify that the font face information for a run
is not stored in the attribute value using the appropriate font face name, but is rather a reference into the
document's theme part, allowing font face information to be stored and managed centrally as part of the
theme data. It is appropriate to think of theme fonts as a "style for fonts" in the same way in which a style is a
reference to the formatting that is stored centrally in another part.

Theme fonts are specified using the theme attribute variants in the rFonts element, rather than storing the
actual font face name.

For example, consider a run of text defined as follows:

<W:r>
<W:rPr>
<w:rFonts w:asciiTheme="minorHAnsi" w:hAnsiTheme="minorHAnsi" />
</wW:rPr>

</wWir>

The rFonts element's attribute values of asciiTheme and hAnsiTheme both store a reference to a theme font
stored in the document's theme part (i.e., there is no font with the primary name minorHAnsi).

Once this information has been established, it is combined with the theme language data stored in the
document's settings to resolve the appropriate theme fonts from the theme part. The syntax and format of the
theme part are stored in the DrawingML syntax and discussed in that section.

2.10 Numbering

Numbering in WordprocessingML refers to symbols—Arabic numerals, Roman numerals, symbol characters
("bullets"), text strings, etc.—that are used to label individual paragraphs of text.

The following two paragraphs each contain numbering as defined by WordprocessingML: the first uses an
Arabic numeral, the second a symbol character:

1. Thisis a paragraph with numbering information.

e Thisis also a paragraph with numbering information.

46

10

11

12

13
14
15
16
17

18

19

20

21
22

23
24
25
26
27

28

30
31
32
33
34

Introduction to WordprocessingML

2.10.1 Numbering Part

Numbering information in a WordprocessingML document is stored in the Numbering part within the package,
which is stored via an implicit relationship from the Main Document part or Glossary Document part of
relationship type http://schemas.openxmlformats.org/wordprocessingml/2006/numbering and
has a content type of vnd-openxmlformats.officedocument.wordprocessingml-numbering+xml.

2.10.2 Numbering Definitions

The specification of a specific set of numbering information is called a numbering definition. Numbering
definitions are stored in two components:

e Abstract numbering definitions
e Numbering definition instances

As shown below, their relationship is (essentially) that of an abstract and an inherited class.

2.10.3 Abstract Numbering Definitions

An abstract numbering definition is the basis for all numbering information in a WordprocessingML document,
as it defines the appearance and behavior of a specific set of numbered paragraphs in a document, and is
defined using the abstractNum element. Although abstract numbering definitions contain all of the numbering
information for one type of numbering, they cannot be directly referenced by content (hence their abstract
designation), they must be inherited by a numbering definition instance, which itself can be referenced by
content. A specific abstract numbering definition in WordprocessingML can be divided into two parts:

e Common numbering properties
e Numbering levels

The complete definition of all abstract numbering properties can be found in the reference for the
abstractNum element.

Common numbering properties refer to the properties that can be specified by all abstract numbering
definitions regardless of their contents. Examples of common numbering properties include: a numbering ID
(which uniquely identifies a numbering definition), the numbering definition type (single level, multi-level,
multi-level hybrid), the numbering name, and optional numbering style references, as discussed in detail later
in this subclause.

Consider the following example of an abstract numbering definition in a WordprocessingML document:

<w:abstractNum w:abstractNumId="4">
<w:nsid w:val="1DE@4504" />
<w:multilevelType w:val="hybridMultilevel" />
<w:lvl w:ilvl="0" w:tplc="0409000F" >

</w:lvl>

47

O 00 N OO s~ W N e

=
» O

P e
A W N

15
16

17
18

19

20
21
22

23
24

25

26
27

28

Introduction to WordprocessingML

<w:lvl w:ilvl="1" w:tplc="04090019">

</w:lvl>
<w:1lvl w:ilvl="2" w:tplc="04090019">

</w:lvl>
<w:lvl w:ilvl="3" w:tplc="0409000F" >

</w:lvl>
</w:abstractNum>

This numbering definition specifies two common properties: a numbering ID (using the nsid element) of
1DE@4504, and a list type (using the multiLevelType element) of hybridMultilevel, which specifies that this
abstract numbering definition is more than one level and contains multiple numbering formats.

The other part of an abstract numbering definition is the specification of one or more numbering levels, each
of which defines a unique set of formatting properties for one level in this numbering definition.

Consider three numbered paragraphs that reference the same numbering definition, but each, in turn,
reference a different level within that list:

1. One
a. Twao
i. Three

Although the paragraphs each reference the same abstract numbering definition (which is discussed later),
each refers to a separate level within that abstract numbering definition, and therefore each has a unique set
of paragraph and numbering properties.

It is important to note that the concept of levels in an abstract numbering definition refers to the levels as
defined in the file format, and in no way the logical indentation of numbered paragraphs within a
WordprocessingML document.

Consider another set of numbered paragraphs in WordprocessingML, where each subsequent paragraph is a
different level but references the same abstract numbering definition:

1} Level one
a) Level two
il Levelthree
{1} Level four
fa) Level five

48

10

11
12
13
14
15
16
17
18
19
20
21
22
23

25

26

27

28

29

30

31

32
33

34
35
36
37

Introduction to WordprocessingML

In this example, the properties of each level of the numbering definition is such that the paragraphs for each
level are indented arbitrarily. However, this is still a completely valid numbering definition, and the paragraphs
each represent subsequent levels of the same numbering definition.

Within an abstract numbering level definition, each numbering level is represented by an 1vl element that
defines a single level of numbering information. Numbering levels specify the following properties: starting
number value, a number format presentation code (e.g., 1 vs. the string literal One), an associated paragraph
style, which previous level should cause this numbering level to restart, the numbering text, number
justification, a paragraph properties indentation for this level, etc. The complete definition of all numbering
level properties can be found on the reference for the 1vl element.

Consider the following numbering level definition in WordprocessingML:

<w:lvl w:ilvl="1">
<w:start w:val="4"/>
<w:nfc w:val="3"/>
<w:pStyle w:val="Headingl"/>
<w:1vlText w:val="BEFORE %2 AFTER %1 END"/>
<w:1v1lJc w:val="1left"/>
<W:pPr>
<w:tabs>
<w:tab w:val="num" w:pos="2880"/>
</w:tabs>
<w:ind w:left="288" w:firstLine="1152"/>
</wW:pPr>
</w:lvl>

This particular numbering level defines the following information:

e Thisis level 1 (the second level) for this numbering definition

e Start at number 4

e Use number format 3 (which translates to 1, 2, 3, and so on)

e When this level is used, apply the Heading1 style

e Use the following level text for the number: BEFORE %2 AFTER %1 END

e Left justify the number

e Set aleft indent of 288 twentieths of a point, and a first line indent of 1152 twentieths of a point

This information is used to display the number for paragraphs of level 1 the reference this numbering
definition.

Of particular significance is the lvlText element, which defines the content of the number text for each
numbering level. Its syntax allows any string literal to be placed in the number (e.g., the ARTICLE in ARTICLE I,
ARTICLE II, ARTICLE Ill, and so on), as well as the current value of the number for this or any previous level in
the list.

49

O 00 N O

11
12
13

14

15

16
17
18

19

20

21
22

23
24
25

26
27

29
30
31
32
33
34
35

Introduction to WordprocessingML

Referring to the numbering level definition above, the IviText is defined as follows:
<w:1vlText w:val="BEFORE %2 AFTER %1 END"/>

This level text specifies three literal strings (BEFORE, AFTER, END) mixed with the current numbering value
from level 1 and level 0 in the document. Therefore, assuming level 0 is just a simple number, when inserted it
would read:

1
BEFORE 1 AFTER 1 END
BEFORE 2 AFTER 1 END
BEFORE 3 AFTER 1 END

BEFORE 1 AFTER 2 END
BEFORE 2 AFTER 2 END

The %1 and %2 values correspond to the value for level 0 and 1 of this list, respectively.

2.10.4 Numbering Definition Instances

A numbering definition instance is a specific instantiation of numbering information that can be referenced by
zero or more paragraphs within the document. A numbering definition instance is defined using the
num element. A specific numbering definition instance in WordprocessingML can be divided into two parts:

e An abstract numbering reference
o (Optional) level overrides

The definition of all numbering definition instance properties can be found on the reference for the num
element.

The required piece of information in a numbering definition instance, the instance must reference an abstract
numbering definition using the abstractNumld element. This element specifies the value of the
abstractNumld attribute for the inherited abstract numbering definition information.

Consider the WordprocessingML for a document with four numbering definition instances, two of which
reference the same underlying abstract numbering definition:

<W:numbering>

<w:num w:numId="2">
<w:abstractNumId w:val="0" />

</w:num>

<w:num w:numId="3">
<w:abstractNumId w:val="1" />

</w:num>

50

N o o A wWwN

10
11
12

13
14

15

16
17
18
19
20
21
22
23
24
25
26
27

29
30

31

32
33

34
35
36

37

Introduction to WordprocessingML

<w:num w:numId="4">
<w:abstractNumId w:val="4" />
</w:num>
<w:num w:numId="5">
<w:abstractNumId w:val="4" />
</w:num>
</w:numbering>

As shown above, the first two numbering definition instances reference abstractNumld values of 0 and 1
respectively, and the last two both reference the abstract numbering definition with an abstractNumlId of 4.

The second (and optional) piece of information for a numbering definition instance is one or more numbering
level overrides using the lvlOverride element. This element specifies a set of optional overrides applied to
zero or more levels from the abstract numbering definition inherited by this instance.

Consider a numbering definition instance that inherits its information from the abstract numbering definition
with abstractNumld of 4, but wishes to use a different set of properties for level 0 of the numbering
definition. The resulting WordprocessingML would look like:

<w:num w:numId="6">
<w:abstractNumId w:val="4" />
<w:1lvlOverride w:ilvl="0">
<w:1vl w:ilvl="0">
<w:start w:val="4" />
<w:lvlText w:val="%1)" />
<w:1v1lJc w:val="1left" />
<w:pPr>
<w:ind w:left="360" w:hanging="360" />
</w:pPr>
</w:lvl>
</w:1lvlOverride>
</w:num>

This level overrides level 0 of the list with the specified set of numbering properties, replacing those in the
abtract numbering definition.

2.10.5 Applying Numbering to Paragraphs

Once numbering information is defined in the numbering part, this information must be associated with
paragraphs within the document in order to display numbering on one or more paragraphs of content.

To accomplish this, numbered paragraphs are identified by the numPr element within the paragraph's
properties element (the pPr element). The numbering properties within a paragraph are specified using two
specific elements that specify the numbering definition information to use:

e A numbering definition instance reference

51

10

11
12

13
14
15
16
17
18
19
20
21
22
23

Introduction to WordprocessingML

e A numbering level reference

The numbering definition instance reference is specified using the numld element. This element contains a
reference to the numld attribute in a specific numbering definition instance within the numbering part, which
links this paragraph to that numbering definition instance.

The numbering level reference is specified using the ilvl element. This element contains a reference to the ilvl
attribute in the specified numbering definition instance's level information, which specifies the numbering
level within the referenced numbering definition instance to be used by this numbered paragraph.

Consider the following numbered paragraphs in a WordprocessingML document:

1. Level oneitem one

a. Level two item one
2. Level oneitem two

a. Level two item one

These four numbered paragraphs, all referencing the same numbering definition, produce the following
WordprocessingML:

<W:p>
<W:pPr>
<W:numPr>
<w:ilvl w:val="0" />
<w:numId w:val="5" />
</winumPr>
</w:pPr>
<W:r>
<w:t>Level one item one</w:t>
</wir>
</w:p>

52

O 00 N OO s~ W N e

W W W W NN NNNNIRNRNNNNDNDRR R B P B B opop o
W N B O VW 00 N O U1 B W N P O W ®©® N O U B W N B O

34
35
36

37
38

39

40

Introduction to WordprocessingML

<w:p>
<W:pPr>
<W:numPr>
<w:ilvl w:val="1" />
<w:numId w:val="5" />
</w:numPr>
</W:pPr>
<W:r>
<w:t>Level two item one</w:t>
</wir>
</w:ip>
<w:p>
<W:pPr>
<W:numPr>
<w:ilvl w:val="0" />
<w:numId w:val="5" />
</w:numPr>
</w:pPr>
<W:r>
<w:t>Level one item two</w:t>
</wir>
</w:ip>
<W:p>
<W:pPr>
<W:numPr>
<w:ilvl w:val="1" />
<w:numId w:val="5" />
</w:numPr>
</w:pPr>
<W:r>
<w:t>Level two item one</w:t>
</wir>
</w:p>

In these numbered paragraphs, level 0 and 1 of the numbering definition are referenced through the ilvl
element with a val attribute of 0 or 1, respectively, however, the numld element always references the
numbering definition instance with a val of 5.

The numbering at any particular numbering level is restarted when a paragraph in the current document from
the same numbering definition uses the level specified in the lvIRestart element for this numbering level.

Consider a set of numbered paragraphs in a WordprocessingML document where:

e Level 1is set to restart after each level O (IvlRestart of 1)

53

O 00 N O

10

11
12
13
14
15
16
17
18
19
20
21

22

Introduction to WordprocessingML
e level 2 is set to never restart (IvlRestart of 0)

1) Levelone
a) Level two —restarts after eachlevel one
i} Level three —never restarts
b} Level two —restarts after eachlevel one
i} kevelﬂwEE-—ﬂeverrEQEWS
2) Levelone
a) Level two —restarts after eachlevel one
i} Level three —never restarts
b} Level two —restarts after each level one
iv) Level three —never restarts

As the example shows, the numbering at level 1 (a, b, ¢, and so on) restarts after each level 0 is used, but
level 2 (i, ii, iii, and so on) never restarts.

2.10.6 The Complete Story

To summarize the use of numbering information in a document, the paragraph properties specify a numPr
element, which references a numbering definition instance via the numld element. The numbering definition
instance specifies an inherited abstract numbering definition via the abstractNumld element. The paragraph
then also specifies the list level from the numbering definition instance using the ilvl element.

Consider the following WordprocessingML for a numbered paragraph:

<wW:p>
<W:pPr>
<W:numPr>
<w:ilvl w:val="0" />
<w:numId w:val="5" />
</w:numPr>
</wW:pPr>
<W:r>
<w:t>Numbered paragraph</w:t>
</wir>
</wip>

Based on the numld of 5, the paragraph uses the numbering definition instance with a numlId of 5:

54

a U A~ W N

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26

27
28

29

30
31
32
33
34
35
36

37
38

Introduction to WordprocessingML

<w:numbering>

<w:num w:numId="5">
<w:abstractNumId w:val="4" />
</w:num>
</w:numbering>

Based on the abstractNumld of 4, this instance inherits the abstract numbering definition with an
abstractNumld of 4:

<W:numbering>
<w:abstractNum w:abstractNumId="4">
<w:nsid w:val="FFFFFF7F" />
<w:multilLevelType w:val="singlelLevel" />
<w:lvl w:ilvl="0">
<w:start w:val="1" />
<w:1lvlText w:val="2%1." />
<w:1v1lJc w:val="1left" />
<W:pPr>
<w:tabs>
<w:tab w:val="num" w:pos="720" />
</w:tabs>
<w:ind w:left="720" w:hanging="360" />
</wW:pPr>
</w:lvl>
</w:abstractNum>

</w:numbering>

Since the numbering definition instance does not specify an override for ilvl 0, the definition for the
corresponding level from the abstract numbering definition is applied to the text.

2.10.7 Numbering Styles

As stated earlier in the styles subclause (§2.8), numbering styles are style definitions which specify common
formatting properties for a multi-level numbering format within a document. This means that a numbering
style definition in the styles part defines only a single property: a reference to a numbering definition instance
stored in the document’s numbering part, using the numlId element within the numPr element. That
numbering definition instance specifies an abstract numbering style, which contains the numbering level
information for the numbering style. It also specifies that it is the basis for the numbering style by back-
referencing the numbering style's styleld attribute via the styleLink element.

Unlike paragraph and character styles, numbering styles are never directly referenced by content in the
document—instead, an abstract numbering definition specifies that it contains the underlying numbering

55

10
11
12
13
14

15

16
17

18

19
20
21
22
23
24
25
26
27
28
29

30
31

32
33
34

35
36

Introduction to WordprocessingML

information for a numbering style, and one or more numbering definition instances reference that abstract
numbering definition.

2.10.8 Referencing Numbering Styles

To use a numbering style in a document, the paragraph properties for one or more paragraphs again specify a
numPr element, which references a numbering definition instance via the numld element. The numbering
definition instance itself again specifies an inherited abstract numbering definition via the abstractNumlId
element.

At this stage, the abstract numbering definition specifies that it is based on a numbering style via either of the
following:

e The abstract numbering style contains no level data, and simply specifies a reference to the numbering
style's styleld attribute via the numStyleLink element.

e The abstract numbering style contains the numbering level information for the numbering style, and
specifies that it is the basis for the numbering style by referencing the numbering style's styleld
attribute via the styleLink element.

Although the result of each method is identical, the following two examples illustrate each of the syntaxes:

Consider the first numbering style syntax, in which the numbering on a paragraph is based on an abstract
numbering definition which simply references the numbering style via numStyleLink. The contents of the
paragraph would consist of the following:

<W:p>
<W:pPr>
<W:numPr>
<w:ilvl w:val="@" />
<w:numId w:val="6" />
</w:numPr>
</wW:pPr>
<W:ir>
<w:t>This paragraph references a numbering style via numStylelLink.</w:t>
</w:ir>
</wip>

The numld element references a numbering definition instance with a value of 6, located in the numbering
part:

<w:num w:numId="6">
<w:abstractNumId w:val="0" />
</W:num>

Based on the abstractNumld of 9, this instance inherits the abstract numbering definition with an
abstractNumld of e:

56

10
11
12
13
14
15
16
17
18

19

20
21
22

23
24

Introduction to WordprocessingML

<w:abstractNum w:abstractNumId="0">
<w:nsid w:val="38901FA4" />
<w:multilevelType w:val="multilevel" />
<w:numStylelLink w:val="TestNumberingStyle" />
</w:abstractNum>

This abstract numbering definition contains no numbering information - it simply notes that it inherits the
numbering information from the numbering style TestNumberingStyle by referencing the styleld
attribute on that style:

<w:style w:type="numbering" w:styleId="TestNumberingStyle">
<w:name w:val="Test Numbering Style" />
<W:uiPriority w:val="99" />
<w:rsid w:val="0@0DB3C4B" />
<W:pPr>
<W:numPr>
<w:numId w:val="4" />
</w:numPr>
</W:pPr>
</w:style>

The style references a numbering definition instance, again via the numld element:

<W:num w:numId="4">
<w:abstractNumId w:val="2" />
</wW:num>

Based on the abstractNumld of 2, this instance inherits the abstract numbering definition with an
abstractNumld of 2:

57

O 00 N OO s~ W N e

e e N e o =
o Uu A~ W N =B O

17
18
19
20

21
22
23

24
25
26
27
28
29
30
31
32
33
34

35
36

37
38
39

Introduction to WordprocessingML

<w:abstractNum w:abstractNumId="2">
<w:nsid w:val="46364EB7" />
<w:multilevelType w:val="multilevel" />
<w:stylelink w:val="TestNumberingStyle" />
<w:lvl w:ilvl="0">
<w:1lvlText w:val="%1 %1 %1" />
<w:1v1lJc w:val="left" />
<W:pPr>
<w:tabs>
<w:tab w:val="num" w:pos="360" />
</w:tabs>
<w:ind w:left="0" w:firstLine="0" />
</w:pPr>
</w:lvl>

</w:abstractNum>

This abstract numbering definition defines the properties for each level of the numbering format (levels 1
through 9 omitted for brevity). Since neither of the numbering definition instances specified overrides for
level 0, the properties from abstract numbering format 2 are applied to level 0 in the resulting numbering
definition instance and are applied to the text via the ilvl element.

Consider the second numbering style syntax, in which the numbering on a paragraph is based on an abstract
numbering definition which defines the numbering information and references the numbering style via
styleLink. The contents of the paragraph would consist of the following:

<wW:p>
<W:pPr>
<W:numPr>
<w:ilvl w:val="@" />
<w:numId w:val="4" />
</w:numPr>
</w:pPr>
<w:ir>
<w:t>This paragraph references a numbering style via stylelink.</w:t>
</wir>
</wip>

The numld element references a numbering definition instance with a value of 4, located in the numbering
part:

<W:num w:numId="4">
<w:abstractNumId w:val="2" />
</w:num>

58

1

O 00 N o U A~ W

10
11
12
13
14
15
16
17

19
20
21
22
23
24

25

26
27

28
29

30

Introduction to WordprocessingML

Based on the abstractNumld of 2, this instance inherits the abstract numbering definition with an
abstractNumld of 2:

<w:abstractNum w:abstractNumId="2">
<w:nsid w:val="46364EB7" />
<w:multilevelType w:val="multilevel"” />
<w:stylelLink w:val="TestNumberingStyle" />
<w:lvl w:ilvl="0">
<w:lvlText w:val="%1 %1 %1" />
<w:1v1lJc w:val="1left" />
<W:pPr>
<w:tabs>
<w:tab w:val="num" w:pos="360" />
</w:tabs>
<w:ind w:left="0" w:firstLine="0" />
</w:pPr>
</w:lvl>

</w:abstractNum>

This abstract numbering definition defines the properties for each level of the numbering format (levels 1
through 9 omitted for brevity) and specifies that it is the underlying numbering information for a numbering
format by referencing the styleld of that numbering style via the styleLink element. Since the numbering
definition instances specified no override for level 0, the properties from abstract numbering format 2 are
applied to level 0 in the resulting numbering definition instance and are applied to the text via the ilvl
element.

2.11 Headers and Footers

Headers and footers refer to text, graphics, or data (such as page number, date, document title, and so on)
that can appear at the top or bottom of each page in a WordprocessingML document.

A header appears in the top margin (above the main document content on the page), while a footer appears in
the bottom margin of a document page (below the main document content on the page); for example:

Header

Footer

59

10
11
12
13

14

15
16

17
18
19
20
21

22

23

24

25

26
27
28
29

30

Introduction to WordprocessingML

Since WordprocessingML is a flow-based format, headers and footers are applied by specifying the headers
and footers for all pages in a particular section of a document.

2.11.1 Header Part

Header information in a WordprocessingML document is stored in a header part within the package, which is
stored via an implicit relationship from the Main Document part or the Glossary Document part of relationship
type http://schemas.openxmlformats.org/wordprocessingml/2006/header and has a content
type of vnd-openxmlformats.officedocument.wordprocessingml-header+xml.

2.11.2 Footer Part

Footer information in a WordprocessingML document is stored in a footer part within the package, which is
stored via an implicit relationship from the Main Document part or the Glossary Document part of relationship
type http://schemas.openxmlformats.org/wordprocessingml/2006/footer and has a content
type of vnd-openxmlformats.officedocument.wordprocessingml-footer+xml.

2.11.3 Headers and Footers

As described above, header and footer information is stored in one or more header or footer parts within the
package.

The hdr element defines a single header for the document, while the ftr element defines a single footer for
the document. Headers and footers are just another document story in WordprocessingML. Within the root
element of the header or footer, the content of the element is similar to the content of the body element, and
contains what is referred to as block-level markup —markup that can exist as a sibling element to paragraphs
in a WordprocessingML document.

Within each section of a document there can be up to three different types of headers and footers:

e First page header/footer
e 0dd page header/footer
e Even page header/footer

First page headers and footers specify a unique header or footer that shall appear on the first page of a
section. Odd page headers and footers specify a unique header and footer that shall appear on all odd
numbered pages for a given section. Even page headers and footers specify a unique header and footer that
shall appear on all even numbered pages in a given section.

Different headers or footers can be useful for bounded documents like books, as shown in the figure below.

60

O 00 N O

11
12

13
14

15

Introduction to WordprocessingML

itle
Authot e

Page 2 Page .
a5

Consider the following simple one-page document with one header:

Header

This document defines one header with the text Header. The header's content is stored in a unique Header
part. The resulting header is represented by the following WordprocessingML:

<w:hdr>
<w:p>
NH
<w:t>Header</w:t>
</wir>
</w:p>
</w:hdr>

Since headers are containers of block level contents, all block level contents can be used within them. In this
particular example, the content is a single paragraph.

Consider a more complex three-page document with different first, odd, and even page headers defined:

61

0 00 N O wun

11

12

13
14
15
16
17
18
19

20

21
22
23
24
25
26
27

Introduction to WordprocessingML

First Even Odd

Page 1 Page 2 Page 3

This document defines three headers stored in three different header parts. The resulting headers are
represented by the following WordprocessingML:

First page header part:

<w:hdr>
<W:p>
<W:r>
<W:t>First</w:t>
</wir>
</w:ip>
</w:hdr>

Even page header part:

<w:hdr>
<w:p>
NH
<w:t>Even</w:t>
</wir>
</w:p>
</w:hdr>

Odd page header part:

<W:hdr>
<w:p>
<W:r>
<w:t>0dd</w:t>
</wir>
</w:p>
</w:hdr>

62

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24

25
26

Introduction to WordprocessingML

2.11.4 Multiple Sections

Documents are capable of having multiple sections, where each section can define up to three headers and
footers. By default, sections other than the first section inherit the previous header and footer references,
unless that section specifies header and footer references.

|

| = w 2
L Chaptet
I,

-
l=
Ty

Chapter 1

Page 1 1

Consider a two-page, two-section document with only the first section header defined. This document defines

one header that is referenced in the first section. The document is represented by the following
WordprocessingML:

<w:body>
<W:p>
<W:pPr>
<w:sectPr>

<w:headerReference r:id="rId6" />

</w:sectPr>
</w:pPr>

</w:p>
<w:sectPr>

</w:sectPr>
</w:body>

The second section does not explicitly reference a header. Instead, the second section inherits the header from

the previous section.

63

10
11

12
13
14

15

16
17
18

19

20

21

22

Introduction to WordprocessingML

2.11.5 Empty Header or Footer

Not specifying a header and footer reference in a section, other than the first section, causes the document to
inherit the previous section's header and footer references. In order to declare an empty header or footer, a
header or footer reference must be made to a null header or footer relationship, as follows:

<Relationship Id="rId2" Type="http:// ../header" Target="null" />

The null attribute value specifies that the header or footer shall not be inherited from the previous section,
and a blank header or footer shall explicitly be used.

2.12 Footnotes and Endnotes

Footnotes and endnotes are separate text stories used in documents and books to show the source of
borrowed material or to enter explanatory or supplementary information that does not interrupt the normal
reading flow of the document.

Footnotes are typically located at the bottom of a page or beneath text being referenced, and endnotes are
typically placed at the end of a document or at the end of a section. If document has been divided up into one
or more sections, each section of a document can contain endnotes.

Both footnotes and endnotes consist of two parts:

e A note reference mark in the body text to indicate that additional information is in a footnote or
endnote, with a numbering system used for each to tell readers whether to look for the note at the
end of the page or the end of the document or section.

e The actual footnote or endnote story content.

Here's an example of a footnote applied to text in a document:

Some referenced text,

64

1
2

3

10
11
12

13

14
15

Introduction to WordprocessingML

The note reference mark follows the noted text and specifies that there is associated footnote information; the
footnote itself is at the bottom of the current page.

Consider the following example of an endnote applied to text in a document:

The note reference mark follows the noted text and specifies that there is associated endnote information; the
endnote itself is at the end of the current section.

2.12.1 Footnote Part

Footnote information in a WordprocessingML document is stored in the footnotes part within the package,
which is stored via an implicit relationship from the Main Document part or Glossary Document part of
relationship type http://schemas.openxmlformats.org/wordprocessingml/2006/footnotes and
has a content type of vnd-openxmlformats.officedocument.wordprocessingml-footnotes+xml.

2.12.2 Endnote Part

Endnote information in a WordprocessingML document is stored in the Endnotes part within the package,
which is stored via an implicit relationship from the Main Document part or Glossary Document part of

65

11

Introduction to WordprocessingML

relationship type http://schemas.openxmlformats.org/wordprocessingml/2006/endnotes and
has a content type of vnd-openxmlformats.officedocument.wordprocessingml -endnotes+xml.

2.12.3 Footnotes and Endnotes

As described above, footnote and endnote information is stored in the corresponding footnotes and endnotes
part within the package. The footnotes element below specifies three or more footnotes, each identified by
the footnote element, for the document. The endnotes element specifies three or more endnotes, each
identified by the endnote element, for the document. Each footnote or endnote element is associated with a
unique ID, specified by the attribute id.

Consider three different types of footnotes, each identified by a footnote element, defined in the Footnotes
part. The use of each type of footnote is defined in the next subclause:

<w:footnotes ...>
<w:footnote w:type="separator" w:id="0">

</w:footnote>
<w:footnote w:type="continuationSeparator" w:id="1">

</w:footnote>
<w:footnote w:id="2">

</w:footnote>
</w:footnotes>

Similarly consider three different types of endnotes, each identified by an endnote element, defined in the
Endnotes part. The use of each type of endnote is defined in the next subclause

<w:endnotes ...>
<w:endnote w:type="separator" w:id="0">

</w:endnote>
<w:endnote w:type="continuationSeparator” w:id="1">

</w:endnote>
<w:endnote w:id="2">

</w:endnote>
</w:endnotes>

Footnotes and endnotes are just another kind of paragraph in WordprocessingML. Within the footnote or
endnote element, the footnote or endnote may contain any valid block-level content.

66

10
11
12

13

14

15
16

17
18
19
20
21

Introduction to WordprocessingML

2.12.4 Footnote and Endnote Types

There are four different types of footnotes and endnotes:

e Normal - contain the text of any footnote (or endnote) in the document.

e Separator — define the separator used to separate the footnote (or endnote) from the document text.

e Continuation separator — define the separator used to separate the footnote (or endnote) from the
document text when the footnote or endnote is a continuation from the previous page.

e Continuation notice — define the notice text to let readers know that the footnote (or endnote) has
continued on the next page.

The attribute type specifies the type of footnote or endnote. Normal footnotes or endnotes are specified by a
type of normal or by omitting type. In conjunction to a normal type, a footnote reference mark, specified by
footnoteRef element, or endnote reference mark, specified by endnoteRef element, must be present within
the footnote or endnote definition.

Some referenced text,

—
and pefenng

Consider the following page in a document, where some text is referenced by a footnote at the end of a page:

The footnote text at the bottom of the page is a normal type footnote represented by the following
WordprocessingML:

<w:footnote w:id="2">
<w:p>
<w:pPr>
<w:pStyle w:val="FootnoteText" />
</w:pPr>

67

O 00 N OO s~ W N e

=
» O

12
13
14
15
16

17
18
19
20

21

22

23

24

Introduction to WordprocessingML

<w:r>
<W:rPr>
<w:rStyle w:val="FootnoteReference" />
</w:rPr>
<w:footnoteRef />
</w:r>
<W:r>
<w:t>Cool reference</w:t>
</w:r>
</w:p>
</w:footnote>

Not specifying any type attribute in the footnote element defaults to being a normal type of footnote. In this
example, the footnote has a unique ID of 2. The text of the footnote is contained in the text run. Like any
paragraph, footnotes can be associated with a particular style, and, in this example, the paragraph uses the
FootnoteText paragraph style. Similarly, like any run, footnotes can be associated with a particular style,
and, in this example, the run uses the FootnoteReference run style.

Separator footnotes or endnotes are specified by separator. These types of footnotes or endnotes define the
look of the separator used to separate document text from footnotes or endnotes. In conjunction to
separator type, a footnote or endnote separator reference mark, specified by a separator element must be
present within the footnote or endnote definition.

Consider the following page in a document, where some text is referenced by a footnote at the end of a page:

Some referenced text,

Vel refern

The line separating the document text from the footnote is represented by the following WordprocessingML:

68

O 00 N OO s~ W N e

=
o

I
N

13
14
15
16
17

18
19

20

21

22
23
24

Introduction to WordprocessingML

<w:footnote w:type="separator" w:id="0">
<w:p>
<W:pPr>
<w:spacing w:after="0" w:1line="240" w:lineRule="auto" />
</w:pPr>
<W:ir>
<w:separator />
</wir>
</w:p>
</w:footnote>

In this example, the footnote has a unique ID of @. The vertical spacing after the line separator is 0 twentieths
of a point. The vertical spacing between the line separator and text is 240 twentieths of a point.

Continuation separator footnotes or endnotes are specified by continuationSeparator. These types of
footnotes or endnotes define the look of the separator used to separate document text from footnotes or
endnotes when the footnote or endnote continues the next page. In conjunction to a
continuationSeparator type, a footnote or endnote continuation separator reference mark, specified by
continuationSeparator element must be present within the footnote or endnote definition.

Consider the following two pages in a document, where some text is referenced by a footnote that extends to
the next page:

e
Page 1 Page 2

The line separating the document text from the footnote that is continued on the next page (circled in red in
the image above) is the continuation separator footnote, and is represented by the following
WordprocessingML:

69

O 00 N OO s~ W N e

=
o

I
N

13
14

15
16

17

18
19
20

21
22
23
24
25

Introduction to WordprocessingML

<w:footnote w:type="continuationSeparator" w:id="1">
<Kw:p >
<W:pPr>
<w:spacing w:after="0" w:1line="240" w:lineRule="auto" />
</w:pPr>
<W:ir>
<w:continuationSeparator />
</wir>
</w:p>
</w:footnote>

In this example, the footnote has a unique ID of 1. The vertical spacing after the line separator is 0 twentieths
of a point. The vertical spacing between the line separator and text is 240 twentieths of a point.

Continuation notice footnotes or endnotes are specified by continuationNotice. These types of footnotes or
endnotes specify the text to let readers know that the footnote or endnote is continued on the next page.

Consider the following two pages in a document, where some text is referenced by a footnote that extends to
the next page. A continuation notice is given to readers to indicate that the footnote extends to the next page:

[continued on next page}

Page 1 Page 2

The continuation notice text is at the bottom of the footnote indicating that the footnote is continued to the
next page (which reads continued on next page above)and is represented by the following
WordprocessingML:

<w:footnote w:type="continuationNotice" w:id="3">
w:p >
<w:pPr>
<w:spacing w:after="0" w:line="240" w:lineRule="auto" />
</w:pPr>

70

v A W N

10
11
12
13
14

15
16

17

18

19

20
21
22
23

Introduction to WordprocessingML

<W:r>
<w:t>(continued on next page)</w:t>
</wir>
</w:ip>
</w:footnote>

In this example, the footnote has a unique ID of 3. The text that shows up after the footnote text is
(continued on next page).

2.12.5 Footnote and Endnote Reference

Once footnote or endnote information is defined in the footnotes or endnotes part, this information must be
associated with document text within the document in order to display the footnotes or endnotes. Each
footnote or endnote is identified by a unique ID that references footnote or endnote definitions specified in
the footnotes or endnotes part. Footnote or endnote references are identified by the footnoteReference or
endnoteReference element within the text run's element (the r element). The footnoteReference or
endnoteReference element points to the footnote or endnote ID defined in the footnotes or endnotes part.

Consider the following one-page document, where some text is referenced by a footnote at the end of the
document page:

Some referenced text.

T
L pederendy

The footnote references text and is represented by the following WordprocessingML.:

<w:p>
<W:ir>
<w:t>Some referenced text</w:t>
</wir>

71

Jany

N o o A wWwN

10

11

12
13
14
15

16

17

18
19

20

21
22
23

24
25
26

27
28
29
30

31
32
33
34

Introduction to WordprocessingML

<KW:r>
<W:rPr>
<w:rStyle w:val="FootnoteReference" />
</w:rPr>
<w:footnoteReference w:id="2" />
</wir>
</wip>

The footnote references the footnote in the footnotes part with ID equals to 2. Like any run, footnotes can be
associated with a particular style, and, in this example, the run uses the FootnoteReference run style. The
style of the footnote defines the look and numbering of the footnote.

2.13 Glossary Document

The introduction to a WordprocessingML document formally introduced the concept of stories, individual
ranges of a word-processing document containing block-level content like paragraphs and tables. Some
examples of stories in a WordprocessingML document include the following: the main document, headers,
footers, comments, footnotes, and endnotes.

At that time, a story was defined by two characteristics:

e Itis a unique region containing block-level content
e All document stories shared the same set of properties (e.g., style definitions, numbering definitions,
and settings)

The glossary document, although it follows the first rule, actually defies the second.

Within a WordprocessingML file, the glossary document is a supplemental storage location for additional
document content which shall travel with the document, but which shall not be displayed for printed as part of
the main document until it is explicitly added to that document by deliberate action.

The glossary document shall also be afforded a separate instance of all of the relationships that are provided
on the main document part - this means that the glossary document shall have its own style definitions,
numbering definitions, comments, headers, footers, etc. within the WordprocessingML document.

Consider a document that shall include ten optional clauses that may be inserted through a user interface. It is
clearly not desirable to have these ten clauses appear in the main document story's contents before they are
explicitly inserted, therefore each of them may be stored in the glossary document and inserted via the user
interface as needed.

Within the glossary document, each distinct region of document content is referred to as a glossary document
entry, and is defined via the docPart element. These document parts may contain any block-level
WordprocessingML element, and may also have a set of classifications and behaviors applied to them via the
glossary document entry's properties.

72

O 00 N o U A~ W

10
11
12
13
14
15
16
17
18
19
20
21

22
23
24
25

26

27

28

29
30

31

32

33
34
35
36

37

Introduction to WordprocessingML

Consider the following definition for the contents of a glossary document part within a WordprocessingML
document:

<w:glossaryDocument>
<w:docParts>
<w:docPart>
<w:docPartPr>

</w:docPartPr>
<w:docPartBody>
<W:p>
<W:r>
<w:t>Sample entry.</w:t>
</wir>
</w:p>
</w:docPartBody>
</w:docPart>
<w:docPart>

</w:docPart>
</w:docParts>
</w:glossaryDocument>

The glossaryDocument element defines the contents of the glossary document part. Within the glossary
document, each docPart element contains the definition for one glossary document entry: in this case, there
are two entries in the glossary document, the first of which contains a single paragraph with a single run of
text.

Each glossary document entry consists of two components:

e The entry's properties, specified using the docPartPr element
e The entry's contents, specified using the docPartBody element

The first specifies information about the entry (e.g., its classification) for when it is inserted, the latter stores
the block level content which constitutes the entry.

2.14 Annotations

2.14.1 Introduction

An annotation is one of various kinds of supplementary markup, which may be stored inside or around a
region of text within the document's contents. The kinds of supplementary information stored within a
document can include comments (§2.14.5), revisions (§2.14.7), spelling and/or grammatical errors (§2.14.10),
bookmark information (§2.14.8), and optional editing permissions (§2.14.9).

Within a document's contents, annotations are stored in one of three different forms:

73

10
11

12
13
14

16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31

33
34

35

36
37
38

Introduction to WordprocessingML

e |Inline
e Cross-Structure
e Properties

These three forms are needed in order to maintain compatibility with both the legacy annotations
functionality of current word-processing applications and the requirements of an XML-based format (i.e., well-
formedness of the resulting XML markup). These three forms are referenced within the individual annotation
types described in subclauses §2.14.2 through §2.14.4.

2.14.2 Inline Annotations

An inline annotation is a form of annotation that does not require special handling in order to maintain the
XML well-formedness requirements of the resulting WordprocessingML output. In these cases, a single XML
element shall encapsulate the entire contents of the document content which is being annotated.

Consider the following WordprocessingML markup for a paragraph that reads The quick brown fox
jumps over the jet lagged dog.,where jet lagged replaced the previous text 1azy when the
editing application was tracking revisions:

<w:p>
<w:ir>
<w:t xml:space="preserve">The quick brown fox jumps over the </w:t>
</wir>
<w:del .. >
<W:r>
<w:delText>lazy</w:delText>
</wir>
</w:del>
Kw:ins .. >
<W:r>
<w:t>jet lagged</w:t>
</wir>
</w:ins>
<w:ir>
<w:t xml:space="preserve"> dog.</w:t>
</wir>
</wWip>

The del and ins elements each fully encapsulate the extent of their respective annotations (a marked deletion
and insertion, respectively), as they are inline annotations.

2.14.3 Cross-Structure Annotations

A cross-structure annotation is a form of annotation that can span portions of WordprocessingML markup.
(Cross-structure annotations may span parts of multiple paragraphs, one half of a custom XML markup
element's contents, and so on.) In these cases, the annotation's region is delimited by two elements, a start

74

23
24
25

26

27
28
29

30
31

Introduction to WordprocessingML

element and an end element, which mark the start and end points of the annotated content, respectively, but
do not contain it. Matching start and end markers have the same id attribute value.

Consider the following WordprocessingML markup for two paragraphs, each reading Example Text, where a
bookmark has been added spanning the second word in paragraph one, and the first word in paragraph two:

<W:p>
<W:r>
<w:t>Example</w:t>
</wir>
<w:bookmarkStart w:id="0" w:name="sampleBookmark" />
<W:r>
<w:t xml:space="preserve"> text.</w:t>
</wir>
</wip>
<w:p>
<w:ir>
<w:t>Example</w:t>
</wir>
<w:bookmarkEnd w:id="@" />
<W:r>
<w:t xml:space="preserve"> text.</w:t>
</wir>
</w:ip>

The bookmarkStart and bookmarkEnd elements specify the location where the bookmark starts and ends,
but cannot contain that bookmark because it spans parts of two paragraphs. They are part of one group
because the id attribute value specifies @ for both.

2.14.4 Property Annotations

A property annotation is a form of annotation that is stored as a property on an object (Property annotations
may appear on paragraph properties, run properties, table rows, and so on.) In these cases, the annotation's
semantics are defined by the property, as they can affect content and/or formatting.

Consider the following WordprocessingML markup for a paragraph reading Example Text, where the first
word had the bold property applied when the editing application was tracking revisions:

75

O 00 N OO s~ W N e

T e =
A W N L O

15
16

17

18
19
20

21

22

23

24
25

26

27

28
29

31
32
33

Introduction to WordprocessingML

<w:p>
<w:ir>
<W:rPr>
<w:b/>
<w:rPrChange .. >
<wW:rPr/>
</w:rPrChange>
</w:rPr>
<w:t>Example</w:t>
</wir>
<w:ir>
<w:t xml:space="preserve"> text.</w:t>
</wir>
</w:ip>

The rPrChange element contains the set of previously applied revision properties associated with a particular
author at a particular time. It is stored itself as a property on the parent run which was modified.

2.14.5 Comments

A comment is an annotation that is anchored to a region of document content, but which contains an arbitrary
amount of block-level content stored in its own separate document story. Within a WordprocessingML
document, comments are stored in a separate comments part within the document package.

A comment in a WordprocessingML document is divided into two components:

e The comment anchor (the text to which the comment applies)
e The comment content (the contents of the comment)

The comment anchor is the cross-structure annotation that defines the region of text on which the comment in
anchored. The comment content is the text of the comment.

Consider a paragraph in a WordprocessingML document whose second word is annotated with a comment:

Some ﬂ'exli _____________ i_,e-{Cunmnt [Userl]: comment]

The first component to this comment is the document content, which defines the extents of the comment and
references the specific comment in the comments part:

<wW:p>
<W:r>
<w:t xml:space="preserve">Some </w:t>
</wir>

76

Jany

O 00 N OO U~ W N

10
11
12
13
14

15

16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32

33
34
35
36
37

Introduction to WordprocessingML

<w:commentRangeStart w:id="0" />
<W:r>

<w:t>text.</w:t>
</wir>
<w:commentRangeEnd w:id="0" />
<W:r>

<w:commentReference w:id="0" />
</wir>

</wip>

The commentRangeStart and commentRangeEnd elements delimit the run content to which the comment
with an id of @ applies (in this case, the single run of text). The commentReference element that follows links
the preceding run content with a comment in the comments part having an id of 8. Without all three of these
elements, the range and comment cannot be linked (although the first two elements are optional, in which
case the comment shall be anchored at the comment reference mark)

The second component to this comment is the comment content, which defines the text in the comment:

<w:comment w:id="0" w:author="Joe Smith"
w:date="2006-04-06T13:50:00Z" w:initials="User">
<W:p>
<W:pPr>
<w:pStyle w:val="CommentText" />
</w:pPr>
<W:r>
<W:rPr>
<w:rStyle w:val="CommentReference" />
</W:rPr>
<w:annotationRef />
</w:r>
<W:r>
<w:t>comment</w:t>
</w:r>
</w:p>
</w:comment>

In this example, the comment specifies that it was inserted by author Joe Smith with the initials User via the
author and date attributes. It is linked to the run content via the id attribute, which matches the value of @
specified using the commentReference element above. The block-level content of the comment specifies that
its text is comment and the style of the comment content is based off of the character style with the name
CommentReference.

77

10

11
12
13
14

15

16

17

18

19

20

21

22
23

24

25
26

28
29
30
31
32
33

Introduction to WordprocessingML

2.14.6 Comments Part

Comment information in a WordprocessingML document is stored in the Comments part within the package,
which is stored via an implicit relationship from the Main Document or Glossary Document part of relationship
type http://../comments and has a content type of vnd-
openxmlformats.officedocument.wordprocessingml-comments+xml.

2.14.7 Revisions

A revision provides a mechanism for storing information about the evolution of the document (i.e., the set of
modifications made to a document by one of more authors). When an application adds revisions to the
content of a WordprocessingML document, depending on the revision type they are specifying this by storing
either:

e The current state of the document (a deletion stores the current state of the text as deleted, and
implies that its original state was the content that used to exist)

e Theinitial state of the document (a run's initial properties are explicitly stored in a previous run
properties block, as the current run properties are always those that are the child of the rPr element

A revision consists of two required pieces of information:

e The revision type (specified via the name of the revision element)
e A unique revision identifier (used to uniquely identify revisions)

As well as optional information:

e The author of the revision
e The date and time of the revision

A revision is stored using the inline annotation format or the property annotation format.

Consider a paragraph of text in a WordprocessingML document in which one word has been inserted, as
follows:

Some text

This paragraph has the word text marked inserted as a revision, and is represented as the following
WordprocessingML:

<W:p>
<w:ir>
<w:t>Some</w:t>
</wir>
<w:ins w:id="0" w:author="Joe Smith" w:date="2006-03-31T12:50:00Z">
NH
<w:t>text</w:t>

78

w N

10
11

12

13

14

15

16

17

18

19
20
21

22

23

24
25
26
27
28
29
30
31
32

Introduction to WordprocessingML

</wWir>
</w:ins>
</wip>

The ins element contains all of the content that shall be treated as revision marked as inserted (i.e., the word
text).

This means that it contains both required pieces of information: the revision type, specified by the name of the
revision element (ins); and a unique revision identifier of @.

The element also stores the optional information about the revision: the word text was inserted by Joe
Smith on March 31, 2006 at 12:50 pm.

Within a WordprocessingML document, the following types of revisions can be used to track the changes to a
document (each annotation's form in parentheses):

e Insertions (inline annotations for run content, property annotations for tables and paragraphs)
e Deletions (inline annotations for run content, property annotations for tables and paragraphs)
e Moves (inline annotations)

e Changes to run/paragraph/table/numbering/section properties (property annotations)

e Changes to custom XML markup (property annotations)

2.14.8 Bookmarks

A bookmark refers to an arbitrary region of content that is bounded and has a unique name associated with it.

Because bookmarks are a legacy word-processing function that predates the concepts of XML and well-
formedness, they can start and end at any location within a document's contents and, therefore, must use the
cross-structure annotation format described in §2.14.3.

Consider the following WordprocessingML markup for two paragraphs, each reading Example Text, where a
bookmark has been added spanning the second word in paragraph one and the first word in paragraph two:

<W:p>
<w:ir>
<w:t>Example</w:t>
</wir>
<w:bookmarkStart w:id="0" w:name="sampleBookmark" />
<W:r>
<w:t xml:space="preserve"> text.</w:t>
</wir>
</wip>

79

Jany

O 00 N OO U~ W N

10
11
12

13

14
15
16
17

18
19
20

21
22

23
24
25
26
27
28
29
30
31
32
33
34

Introduction to WordprocessingML

<W:p>
<W:r>
<w:t>Example</w:t>
</wir>
<w:bookmarkEnd w:id="e" />
<W:r>
<w:t xml:space="preserve"> text.</w:t>
</wir>
</wip>

The bookmarkStart and bookmarkEnd elements specify the location where the bookmark starts and ends,
but cannot contain it using a single tag because it spans parts of two paragraphs. However, the two tags are
part of one group because the id attribute value specifies @ for both.

2.14.9 Range Permissions

A range permission refers to a special type of bookmark used to control which subset(s) of users may edit a
particular region of a document. Range permissions specify the user, or set of users, that are allowed to edit all
content between them whenever the document protection specified by the documentProtection element is
enabled and set to readOnly or comments

Like bookmarks, range permissions are a legacy word-processing function that predates the concepts of XML
and well-formedness, so they can start and end at any location within a document's contents and, therefore,
must use the cross-structure annotation format described in §2.14.3.

Consider the following WordprocessingML markup for a single paragraph, where a range permission has been
added spanning the words range permission:

<wW:p>
<W:r>
<w:t xml:space="preserve">This is a </w:t>
</wir>
<w:permStart w:id="0" w:edGrp="everyone"/>
<w:ir>
<w:t>range permission</w:t>
</wir>
<w:permEnd w:id="0"/>
<W:r>
<wit>.</wet>
</wir>
</wip>

The permStart and permEnd elements specify the location where the range permission starts and ends. The
two tags are part of one group because the id attribute value specifies @ for both.

80

10
11
12

13

14
15
16

17
18
19
20
21
22
23
24
25
26

27
28
29

30

31
32
33
34
35
36

Introduction to WordprocessingML

If document protection was enabled, then no content in this document shall be editable except for this range
permission, which is editable by all users that open the document (specified using an editor group of
everyone).

2.14.10 Spelling and Grammar

A spelling and grammar error is an annotation used to specify the locations of an existing spelling and/or
grammatical error within the contents of a document. Spelling and grammar errors use the cross-structure
annotation format.

Rationale: When a WordprocessingML document is saved, applications may choose to save currently flagged
spelling and grammar errors, for two reasons:

e In order to increase the performance subsequent loads of the document (as those load operations can
rely on the persisted proofing state of the document)

e Inorder to store words which shall not be marked as proofing errors regardless of how they would
normally be flagged by the proofing tools engine (i.e., to store spelling and grammar exceptions).

Consider the following paragraph consisting of two misspelled words, where the second word has been
explicitly flagged as not being a spelling error. This paragraph would consist of the following
WordprocessingML markup:

<w:p>
<w:proofErr w:val="spellStart"/>
<w:ir>
<w:t>ergwt</w:t>
</w:ir>
<w:proofErr w:val="spellEnd"/>
w:ir>
<w:t xml:space="preserve"> werewr</w:t>
</w:ir>
</wip>

The proofErr elements, with a val attribute value of spellStart and spellEnd, respectively, delimit the start
and end of the content in this paragraph that is stored as a spelling error. Since the second word is not
included in that range, it is not stored as a spelling error.

2.15 Mail Merge

Mail merge refers to a process by which a WordprocessingML document is connected to and populated with
external data by a conforming hosting application and/or data source access application. A WordprocessingML
document that contains the necessary data to connect to an external data source during a Mail Merge is
known as a source document. In other words, a source document is a WordprocessingML document containing
the elements and attributes necessary to enable the document to connect to an external data source, but not
yet merged with any data.

81

10

11
12
13

14

15

16

17

18

19

20
21
22
23
24

25

26

27

28
29

Introduction to WordprocessingML

Applications leverage source documents to generate new documents containing the static content contained
in the merged document as well as data from the specified external data source. The documents that result
from importing external data into a source document are known as merged documents. How source
documents and merged documents are specified is explained in the following sections.

2.15.1 Mail Merge, WordprocessingML, and Hosting Applications

The two key parts of the mail merge process are:

1. Connecting to an external data source
2. Populating mail merge fields with external data

It is important to note that aspects of the mail merge process outside of connecting to an external data source
and populating mail merge fields with external data, are at the discretion of the hosting application.

As an additional example, WordprocessingML provides an element to be used as a flag by hosting applications
to specify action to be taken on the merged documents that are generated by a mail merge. In other words,
performing actions such as:

e creating a new document for each merged document
e generating and sending emails containing merged document
e printing merged documents

may be specified through WordprocessingML, but what if any specific action is taken on merged documents is
determined by the application.

2.15.2 Connecting Documents to an External Data Source

As mentioned, a source document is the single WordprocessingML document that contains the data necessary
to be connected to an external data source by a conforming hosting application and/or data source access
application. The presence and parameters of this connection are specified within the mailMerge element. This
element enables WordprocessingML documents to be connected to an external data source by specifying the
following data:

e Where the external data is located (e.g., file path)
e What type of data the external data source contains (e.g., database and spreadsheet)
e How the data will be accessed

Consider a document containing static WordprocessingML constructs such as paragraphs in addition to two
WordprocessingML mail merge fields calling for Courtesy Title and Last Name data.

82

O 00 N O

11
12

13
14
15
16

17

18
19
20

Introduction to WordprocessingML

Dear {MERGEFIELD "Courtesy Title" \m}
{MERGEFIELD "Last Name" \m},

Sample text. Sample text. Sample text.
Sample text. Sample text. Sample text. Sample
text. Sample text. Sample text. Sample text.
Sample text. Sample text. Sample text. Sample
text. Sample text. Sample text. Sample text.
Sample text. Sample text. Sample text. Sample
text. Sample text. Sample text. Sample text.
Sample text.

Sincerely,

If the following WordprocessingML was added to this document, this document would become a source
document rather than just a standard WordprocessingML document, as the mailMerge element specifies the
elements and attributes necessary to enable the hosting applications and/or data source access applications to
connect the document to an external data source.

<w:mailMerge>

<w:dataType w:val="database” />
<w:query w:val="SELECT * FROM Tablel" />
<w:dataSource r:id="rId1" />

</w:mailMerge>

Here, the dataType and dataSource elements specify that the given document shall be connected to the
external data source referenced by the r:id attribute's value of rId1. While connected to the external data
source, the merged document together with the hosting application and/or data source access application may
extract data from the external data source as specified by the connectString and query elements.

2.15.3 Populating Merged Documents with External Data

Before the hosting application can populate merged documents with external data, mail merge fields must be
inserted into the merged document and mapped to the external data. How external data is mapped to given
mail merge fields is determined by the WordprocessingML element fieldMapData.

83

16
17
18
19
20
21

22
23

24
25
26
27
28
29

30
31
32
33

Introduction to WordprocessingML

Consider the example merged document from the previous example which contained the two mail merge
fields calling for Courtesy Title and Last Name. The WordprocessingML below demonstrates how
mapping of the external data to the merged document's mail merge fields occurs:

<w:fieldMapData>
<w:type w:val="dbColumn" />
<w:name w:val="Customer Title" />
<w:mappedName w:val="Courtesy Title" />
<w:column w:val="9" />
</w:fieldMapData>
<w:fieldMapData>
<w:type w:val="dbColumn" />
<w:name w:val="Customer Last Name" />
<w:mappedName w:val="Last Name" />
<w:column w:val="10" />
</w:fieldMapData>

Within the first fieldMapData element, the child elements column, name, type, and mappedName specify
that the data contained within tenth column titled 'Customer Title', in the specified external database, is to be
mapped to the mail merge field calling for 'Courtesy Title' data, respectively. Within the second fieldMapData
element, the child elements column, name, type, and mappedName specify that the data contained within
eleventh column in the specified external database is to be mapped to the merge field titled Customer Last
Name or the predefined merge field name Last Name.

Once a merged document's mail merge fields have been mapped to external data, the hosting application
and/or data source access application may populate the respective fields with applicable external data.

Consider a conforming hosting application and/or data source access application that wishes to populate the
mail merge fields within the merged document from the previous example with applicable external data. In
addition, consider that the specified external data source contains two records--one for Mr. John Doe and one
for Ms. Jane Smith. With external data from the Customer Title column mapped to the Mail Merge field
calling for Courtesy Title data, and the Customer Last Name column mapped to the Mail Merge field
calling for Last Name data to populate the fields within this merged document with external data.

The mail merge process will then run through the specified external database and populate the mail merge
fields with the data from the Customer Title and Customer Last Name columns in the specified
database, and generate two of merged documents containing the specified external data as well as the static
contents of the source document (illustrated in the table below):

Source Document Merged document populated with | Merged document populated with
first external data source entry second external data source entry

84

10
11

12

13

14
15
16

17
18
19
20

21

22

Introduction to WordprocessingML

Source Document

Merged document populated with
first external data source entry

Merged document populated with
second external data source entry

Dear{MERGEFIELD "Courtesy Title"
\m} {MERGEFIELD "Last Name"
\m},

Sample text. Sample text. Sample
text. Sample text. Sample text.
Sample text. Sample text. Sample
text. Sample text. Sample text.
Sample text. Sample text. Sample
text. Sample text. Sample text.

Sincerely,

Dear Mr. Doe:

Sample text. Sample text. Sample
text. Sample text. Sample text.
Sample text. Sample text. Sample
text. Sample text. Sample text.
Sample text. Sample text. Sample
text. Sample text. Sample text.

Sincerely,

Dear Ms. Smith:

Sample text. Sample text. Sample
text. Sample text. Sample text.
Sample text. Sample text. Sample
text. Sample text. Sample text.
Sample text. Sample text. Sample
text. Sample text. Sample text.

Sincerely,

2.16 Settings

A setting specifies a stored preference that shall be used when processing the contents of the document. In

other words, settings refer to specified behaviors that shall be applied to WordprocessingML documents on a

document by document basis. Just like paragraphs and text runs have properties specified that apply to their

contents, entire WordprocessingML documents leverage settings to specify properties and behaviors that

apply to the entire document.

These settings are typically divided into three categories:

e Document Settings — Settings that influence the appearance and behavior of the current document,
as well as storing document-level state.

o Compatibility Settings — Settings that tell applications to perform behaviors which are designed to
maintain visual output of previous word-processing applications.

o Web Settings — Settings that affect how a document shall be handled when it is saved as HTML.

2.16.1

Document Settings

A document setting specifies a document-level property that affects the handling of a given document, and

influences the appearance and behavior of the current document, as well as the stored document-level state.

All document settings are found in the Document Settings part.

Consider a document in which the document setting doNotHyphenateCaps is applied. As a document setting

this element specifies whether words comprised of all capitalized letters shall be hyphenated or not
throughout the given document.. Specifically, if words in ALL CAPITAL LETTERS shall not be hyphenated, this
requirement would be specified by adding the following WordprocessingML to the settings part:

<w:doNotHyphenateCaps w:val="true"/>

Specifying that words comprised of ALL CAPITAL LETTERS shall be hyphenated, as illustrated below:

85

10
11
12

13

14
15
16

17
18

22

Introduction to WordprocessingML

THIS IS A HYPHEMATION EXAMPLE. THIS I5 A SHORT HYPHEMATION EXAMPLE. THIS IS A SHORT
HYPHEMNATION EXAMPLE.

If this element is omitted, then words in ALL CAPITAL LETTERS shall be hyphenated when the document is
hyphenated, as illustrated below:

THIZ 15 & HYPHEMATIOMN EXAMPLE. THIS IS A SHORT HYPHENATION EXAMPLE. THIS 15 A SHORT HYPHE-
MATION EXAMPLE.

2.16.2 Compatibility Settings

A compatibility setting is an optional setting used to mimic behavior of documents created in earlier word-
processing applications. It is recommended that new WordprocessingML documents contain no compatibility
settings. If compatibility settings are needed, they are stored in the Document Settings part (§2.16.1).

Consider a document in which the compatibility setting ww11IndentRules is applied. As a compatibility
setting, this element specifies an indentation behavior to be applied throughout the given document to
preserve visual fidelity with an earlier word processing application. Specifically, if the indentation applied to
numbering when positioned next to a wrapped object shall not be suppressed, this requirement would be
specified by adding the following WordprocessingML to the settings part

<w:compat>
<w:wwllIndentRules />
</w:compat>

Specifying that indentation applied to numbering when positioned next to a wrapped object shall not be
suppressed, as illustrated below:

1. Example

Example
Example

2
3
4. Example
5. Example

If this element is omitted, then indentation applied to numbering when positioned next to a wrapped object
shall be suppressed, as illustrated below:

1. Example

2. Example
3. Example
4. Example
5. Example

86

10

11
12
13

14

15

16

17

18
19
20
21
22
23

24
25
26
27
28

29
30
31
32
33

Introduction to WordprocessingML

2.16.3 Web Settings

A web setting is a setting used to specify a document-level property that is applicable when saving a web page
as a WordprocessingML document, or when saving a WordprocessingML document as a webpage. Thus, if a
given WordprocessingML document was not created from a web page, and will never become a web page, no
web settings are needed within the document. If they are needed, web settings are stored in the Web Settings
part.

Consider a document in which the web setting allowPNG is applied. As a web setting this element specifies if
the PNG graphics format will be used for persisting images when saving the document as a web page.
Specifically, if the PNG graphics format will be used when saving a document as a web page, this requirement
would be specified by adding the following WordprocessingML to the settings part:

<w:webSettings>
<w:allowPNG />
</w:webSettings>

If this element is omitted, then the JPEG graphics format will be used for persisting images when saving the
document as a web page.

2.17 Fields and Hyperlinks

2.17.1 Fields

Most text in a word processing document is static; that is, unless it is directly changed as the result of editing,
its contents remain the same, no matter how the rest of the document might change. However, certain useful
pieces of information can change value over the life of a document. Consider the case of a reference to a page
number, as in "For more information on this topic, see page 56." Clearly, hard coding the page number as 56
means that that number will need to be manually replaced as the document's size or layout is changed. Even a
simple change to any margin, line spacing, or font size can invalid such references.

Fields provide a mechanism for placeholders, such as page reference numbers, that can be added to a
document such that those placeholders are replaced by their corresponding values when the document is
rendered for display or print. Other applications for fields include, but are not limited to, automatic numbering
of tables and figures, document creation and current date and time, document author information, and the
computation of totals for a table column.

A field is a set of codes that instructs a WordprocessingML consumer to insert text, graphics, page numbers,
and other material into a document automatically. (The DATE field causes the current date to be inserted.) The
text or graphics inserted into a document when a consumer carries out a field's codes is referred to as the field
result for that field. The act of carrying out a field's codes is referred to as a field update. As to how or when
any field is updated is outside the scope of this standard.

87

10

11

12
13
14

15
16
17

18

19

20
21
22

23
24

25

26
27

28
29
30
31

32

Introduction to WordprocessingML

2.17.2 Hyperlinks

As well as allowing for dynamic run content using fields, a WordprocessingML document may contain one or
more hyperlinks, which allow for the linking of two disparate regions of WordprocessingML content (analogous
to hyperlinks in HTML pages). WordprocessingML hyperlinks can be any of the following:

e Intradocument: A hyperlink can target any bookmark contained within the current WordprocessingML
document.

e Interdocument: A hyperlink can target another WordprocessingML package, as well as specify a
bookmark within that package.

e Other destinations: A hyperlink can target any other valid URI location.

2.18 Miscellaneous Topics

2.18.1 Text Boxes

All VML-based drawing objects (except for connectors) support the addition of rich WordprocessingML content
within their extents. When WordprocessingML contents have been added to a VML drawing object, the
resulting text is contained within a text box.

When WordprocessingML content is contained within a text box, it is represented within the object by
specifying the VML textbox element, which contains within it a single txbxContent element that contains all of
the desired WordprocessingML content. Text box content cannot contain references to other document
stories, nor can it contain other txbxContent elements. That is, nested shapes cannot have rich content.

2.18.2 Subdocuments

Within a WordprocessingML document, it is sometimes necessary to break a large document into two or more
separate WordprocessingML document files, allowing each of these files to be distributed, edited, and handled
independently.

A book might consist of five chapters, each edited by a separate author. The editor for the book would
therefore desire to create six WordprocessingML documents - one for each author to work on their chapter,
and a main document which collates the content of the five chapters appropriately.

When a WordprocessingML document is composed of other WordprocessingML documents in this way, the
resulting documents are a master document and its subdocuments.

e A master document is a document which incorporates one or more subdocuments (as well as optional
WordprocessingML content) to create a larger document

e A subdocument is a WordprocessingML document—there is no specific information in a document
which classifies it as such

Consider a WordprocessingML document, which is being used to write a book:

88

2
3

10
11

Introduction to WordprocessingML

My Book

Once upon a time...

Chapter One
It was a cold, stormy night...

Chapter Two
Still cold...

To allow this document to be written by multiple authors, each chapter in the book is placed in a separate file
(the sections highlighted in red below):

My Book

Once upon a time...

Chapter One
It was a cold, stormy night...

Chapter Two
Still cold...

The result is three WordprocessingML documents:

e A master document (containing the title of the book, the first paragraph, and references to the
subdocuments for each chapter)
e Two subdocuments (one for each chapter)

2.18.3 Importing External Content

When generating WordprocessingML documents, it is sometimes necessary to include existing document
content (henceforth called external content) within the document. External content in a document is typically

89

10

11
12
13
14
15
16
17
18

19
20
21
22
23
24

25

26
27
28
29

30
31
32
33

Introduction to WordprocessingML

included because it was stored in a format other than the WordprocessingML format defined by this Office
Open XML specification.

In order to facilitate the inclusion of such content without requiring its conversion as a prerequisite to its
inclusion in a document, WordprocessingML includes the facility for applications to implement the import of
external content in any format as part of a WordprocessingML document. This functionality, called external
content import, allows the inclusion of content of an arbitrary content type within the WordprocessingML
package, which can then be opened and merged into the main document when the package is consumed by
applications which understand that content type.

Consider a WordprocessingML document which is being created based on the following existing HTML
content:

<html .. >
<body style="margin-left:200px;margin-top:50px">
<p>Paragraph one.</p>
<blockquote style="border:5px solid #@OFFFF">Paragraph in a
blockquote.</blockquote>
<p>Paragraph two.</p>
</body>
</html>

This content can be converted to its WordprocessingML equivalents using the XML syntax defined by this
Office Open XML specification, or a more basic tool can use the external content import to include the HTML
document within a WordprocessingML package, allowing a subsequent consumer of that content to import the
resulting HTML. When the resulting WordprocessingML package is opened, the HTML document it could be
read (if it is an alternate format understood by the consuming application) and migrated into the appropriate
location in the main WordprocessingML document.

2.18.4 Roundtripping Alternate Content

Office Open XML defines a mechanism for the storage of content which is not defined by this Office Open XML
specification, for example extensions developed by future software applications which leverage the Open XML
formats. This mechanism allows for the storage of a series of alternative representations of content, of which
the consuming application may use the first alternative whose requirements are met.

Consider an application which creates a new paragraph property intended to make the colors of its text change
randomly when it is displayed. This functionality is not defined in this Office Open XML specification, and so
the application might choose to create an alternative representation setting a different manual color on each
character for clients which do not understand this extension using an AlternateContent block as follows:

90

O 00 N OO s~ W N e

N N N N N N NN NN R B P B R B P B B
© 0 N O U1 B W N B O VW 0 N OO U B W N B O

30
31
32

33
34

35
36

37
38

Introduction to WordprocessingML

<ve:AlternateContent xmlns:ve=".">
<ve:Choice Requires="colors" xmlns:colors="urn:randomTextColors">
<W:p>
<W:pPr>
<colors:random colors:val="true" />
</wW:pPr>
<W:r>
<w:t>Random colors!</w:t>
</wir>
</w:p>

</ve:Choice>
<ve:Fallback>
<W:p>
<W:r>
<W:rPr>
<w:color w:val="FFoe0e" />
</wW:rPr>
<w:t>R</w:t>
</wir>
<W:r>
<W:rPr>
<w:color w:val="00FF00" />
</w:rPr>
<w:t>a</w:t>
</wir>

</w:p>
</ve:Fallback>
</ve:AlternateContent>

The Choice element that requires the new color extensions uses the random element in its namespace, and
the Fallback element allows clients that do not support this namespace to see an appropriate alternative
representation.

These alternate content blocks may occur at any location within a WordprocessingML document, and
applications shall handle and process them appropriately (taking the appropriate choice).

However, WordprocessingML does not explicitly define a set of locations where applications shall attempt to
store and roundtrip all non-taken choices whenever possible.

If an application does not understand the colors extension, the resulting file (if alternate choices are to be
preserved would appear as follows:

91

Jany

O 00 N OO U~ W N

10

11
12
13
14
15
16
17
18
19
20
21
22
23
24
25

26

Introduction to WordprocessingML

<ve:AlternateContent xmlns:ve=".">
<ve:Choice Requires="colors" xmlns:colors="urn:randomTextColors">

</ve:Choice>
<ve:Fallback>

</ve:Fallback>
</ve:AlternateContent>

The file would then appear as follows after the choice is processed:

<w:p>
<W:r>
<W:rPr>
<w:color w:val="FFeeee" />
</w:rPr>
<W:t>R</w:t>
</wir>
<W:r>
<W:rPr>
<w:color w:val="00FF00" />
</W:rPr>
<w:t>a</w:t>
</wir>

</w:p>

End of informative text.

92

O 0 N O

10
11

12

13
14

15

16

17

18

19
20
21
22
23

24

25

Introduction to SpreadsheetML

3. Introduction to SpreadsheetML

This clause is informative.

This clause contains a detailed introduction to the structure of a SpreadsheetML document.

3.1 Workbook

3.1.1 Overview

A workbook is composed of book-level propertie